## Part One: Multiple choice questions

(2 pt each)

1. Which of the following does not describe a solution?

- a) soda pop
- b) a 15 *karat* gold/nickle bracelet
- c) atmospheric air
- d) chocolate chip cookies

2. Percent (%) concentration is based on which of the following units x 100%

- a) g/mol
- b) mol/L
- c) mL/mol
- d) g/mL
- e) mg/L

3. Calculations of concentration typically involve dividing the \_\_\_\_\_ or \_\_\_\_ of the solute by

- a) mass or moles; mass
- b) mass or moles; volume
- c) volume or mass; moles

- d) moles or volume; mass
- e) volume or moles; volume

4. Which of the following molecules would you expect to be the most hydrophobic?

- a) butanone
- b) butane
- c) butanol
- d) butanal
- e) butanoic acid

5. Which of the following ionic compounds produces the most *equivalents of cation* in aqueous solution?

- a) NH₄Cl
- b) MgSO<sub>4</sub>
- c) NaBr
- d) LiNO<sub>3</sub>
- e) KCN

6. Which of the following bonds are rotationally 'constrained' with regards to the two carbons involved?

- a) Alkenes
- b) Alkanes
- c) Alkynes
- d) a & b
- <mark>е) а & с</mark>
- f) all of them

7. What is the relationship between the two molecules shown below & to the right?



- b) Structural isomers
- c) Geometric isomers
- d) none of the above (same molecule)





8. What molecular geometry describes each of the carbons involved in a molecule of cyclohexane?

- a) Tetrahedral
- d) Trigonal planar
- b) Bent
- e) Trigonal pyramidal





- 9. Why would the molecule below be unlikely to exist in a natural biomolecule?
  - a) cyclic hydrocarbons can't contain oxygen atoms
  - b) it contains an ester bond
  - c) it has too much ring strain
  - d) it has a carbonyl and alcohol groups
  - e) it has too many oxygens



10. Which of the following molecules requires *cis* or *trans* in its name to identify which geometric isomer it represents?













e) a&d

| 11. Aromatic hydrocar | bons are unusual moled  | cules in that their structures are flat due to the carbons being |
|-----------------------|-------------------------|------------------------------------------------------------------|
| in the                | geometry:               |                                                                  |
| a) tetrahedral        | c) linear               | e) trigonal pyramidal                                            |
| b) bent               | d) trigonal planar      | , ,                                                              |
|                       | a the reaction chave be |                                                                  |

- 12. What is wrong with the reaction shown below?
  - a) It is missing a product
  - b) It is missing a reactant
  - c) It has the wrong coefficients
  - d) Physical states are missing

  - e) The arrow points the wrong way

For the questions below, refer to the energy diagram shown to the right. *CIRCLE* the correct letter.

- 13. Which letter represents the total quantity of bond energy left in the products of the reaction?
  - A.
- B.
- D.
- 14. Which letter represents the change in bond energy over the course of the reaction?
  - Α.
- B.

В.

- 15. Which quantity would you expect to change if a catalyst were added to this reaction?



- D.



- 16. Which of the following would not increase the rate of a reaction?
  - a) increasing temperature
- c) adding a catalyst
  - e) they all would increase the rate

 $H_2SO_{3^{(aq)}} \rightarrow H_2O_{(1)} + 2SO_{2^{(q)}}$ 

- b) increasing [reactant]
- d) increasing [product]
- 17. What is the **pH** of a solution that contains a hydronium ion concentration  $[H_3O^+] = 2.73 \times 10^{-4} M$ ?
  - a) 3.56
- b) 2.73
- c) 11.37
- d) 1.74
- e) 5.37
- 18. The reaction shown below describes the role of carbon dioxide and breathing in the blood buffer system. What would happen if a strong base were added to this system?





- a) [CO<sub>2</sub>] would increase
- c) [HCO<sub>3</sub>-] would increase
- b) [H<sub>2</sub>CO<sub>3</sub>] would increase
- d) all components except H<sub>2</sub>O would increase
- 19. Which of the following functional groups is likely to be ionized in aqueous solution?











- 20. What is the relative difference in [H<sub>3</sub>O+] between water (pH 7.2) and ammonia (pH 11.2)?
  - a) 4x
- b) 100x
- c) 40x
- d) 10,000x
- e) 40,000x

- 21. What functional group is shown in the molecule to the right?
  - a) Ether
- b) Ester
- c) Amide
- d) Sulfhydryl
- e) Thioester
- e) Ketothione

- S
- 22. Which of the following functional groups has the most negative charge at physiological pH (7.2)?







" O R OI



- 23. Which of the following is always a product of an acid-base neutralization reaction?
  - a) H<sub>3</sub>O<sup>+</sup>
- b) OH-
- c) H<sub>2</sub>O
- d) a & b
- e) all three
- 24. Which of the following pairs of molecules would compose a good buffer system?
  - a) CH<sub>3</sub>COOH & CH<sub>3</sub>COO<sup>-</sup>
- c) CH<sub>3</sub>CHO & CH<sub>3</sub>CO<sup>-</sup>
- b) CH<sub>3</sub>NH<sub>2</sub> & CH<sub>3</sub>NH<sup>-</sup>
- d) CH<sub>3</sub>OH & CH<sub>3</sub>O<sup>-</sup>

## **Part Two: Organic Structures & Nomenclature**

- 25. Pyruvic acid (CH<sub>3</sub>COCOOH) is shown to the right. It is an important intermediate in human metabolism that we will study later this semester. (6 pts)
  - a. Write out the equilibrium reaction for pyruvic acid and its conjugate base when it is dissolved in aqueous solution.

CH<sub>3</sub>COCOOH + H<sub>2</sub>O  $\rightleftharpoons$  CH<sub>3</sub>COCOO<sup>-</sup> + H<sub>3</sub>O<sup>+</sup>

b. If the strong base sodium hydroxide (NaOH) were added to a solution of pyruvic acid at equilibrium, which direction—left (toward reactants) or right (toward products)—would the reaction shift?

Would decrease  $H_3O^+$ , so shift reaction right, toward products

26. Briefly explain in simple terms why **glucose** (shown below) is highly soluble in water, whereas a similar organic molecule, *cyclohexane-1,2-diol*, is not. (3 pts)

The ratio of C:O provides a simple way of measuring polar versus non-polar character of a molecule. Molecules with a ratio near 1:1 are soluble, whereas molecules with much more carbon than oxygen are too non-polar to dissolve in water



glucose



Glucose:  $C_6H_{12}O_6$ , C:O = 1:1 Cyclohexane-1,2-diol:  $C_6H_{12}O_2$ , C:O = 3:1

3

cyclohexane-1,2-diol

a) 3-ethyl-4-methyl-2-pentene

(provide name)

b) propyl 2-butenyl ether

(draw the structure →)

<u></u>

✓o

✓

c) 3-methyl-butanal

(provide name)

O

d) N,N-dimethyl-hexanamine

(draw the structure →)

\_N\_\_\_\_\_

28. Eugenol and zingerone are two similar aromatic compounds found in a variety of "essential oils". Both are based on a similar core aromatic group, but have different functional groups that decorate this structure.

(6 pts)

a. **Identify the name** of the <u>core aromatic</u> <u>structure</u> that is common to both compounds.

**Phenol** (blue ring)

- ether alkene eugenol (clove oil)
- b. <u>Circle</u> and <u>name</u> all of the other functional groups found on each of these compounds.

## **Part Three: Problem Solving Calculations**

(Make sure that you keep track of significant figures!)

The nutritional label for **chocolate milk** is shown to the right. Answer the following questions based on this label.

29. Based on the caloric density of fat (9 Cal/gram), calculate the number of <u>Joules</u> of energy that are derived from fat a single serving of chocolate milk.

(4 pts)

| <b>Nutritio</b>                                          | n Facts             |  |  |
|----------------------------------------------------------|---------------------|--|--|
| Serving Size 1 cup (249g)<br>Servings Per Container 8    |                     |  |  |
| Amount Per Serving                                       |                     |  |  |
|                                                          | alories from Fat 80 |  |  |
|                                                          | % Daily Value*      |  |  |
| Total Fat 8g                                             | 13%                 |  |  |
| Saturated Fat 5g                                         | 26%                 |  |  |
| Trans Fat 0g                                             |                     |  |  |
| Cholesterol 30mg                                         | 10%                 |  |  |
| Sodium 200mg                                             | 9%                  |  |  |
| Total Carbohydrate 27g 9%                                |                     |  |  |
| Dietary Fiber 1g                                         | 5%                  |  |  |
| Sugars 25g                                               |                     |  |  |
| Protein 9g                                               |                     |  |  |
| Vitamin A 6%                                             | Vitamin C 0%        |  |  |
| Calcium 30%                                              | • Iron 6%           |  |  |
| Vitamin D 30%                                            |                     |  |  |
| *Percent Daily Values are based on a 2,000 calorie diet. |                     |  |  |

30. Drinking a glass of milk is a good treatment for heartburn, which is caused by excess stomach acid leaking into the esophagus. If drinking a glass of milk changed your stomach pH from 2.37 to 6.21 in a volume of 1.25 liters, how many moles of acid would be getting neutralized? (6 pts)

$$\Delta pH = 6.21 - 2.37 = 3.84$$
 [H<sub>3</sub>O<sup>+</sup>] = 10<sup>-pH</sup> = 10<sup>(-3.84)</sup> = 1.45 x 10<sup>-4</sup> M

M = mol/L =  $\frac{1.45 \times 10^{-4} \text{ mol}}{1 \text{ L}}$  = 1.81 x 10<sup>-4</sup> mol

3 sig fig

31. A single serving of chocolate milk is 1 cup (= 237 mL). Given this volume and information from the nutritional label, <u>calculate the molarity</u> (**M**) of cholesterol (386.7 g/mol) in chocolate milk. (6 pts)

32. <u>Balance the reaction</u> shown below & <u>calculate the mass</u> of iron (III) oxide (159.69 g/mol) produced from the oxidation of 50.0 grams of pure iron (55.85 g/mol) with oxygen. **(9 pts)**