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Analysis of Variance (ANOVA)

Recall, when we wanted to compare two population means, we used the 2-sample t procedures .
Now let’s expand this to compare k ≥ 3 population means. As with the t-test, we can graphically get an
idea of what is going on by looking at side-by-side boxplots. (See Example 12.3, p. 748, along with Figure
12.3, p. 749.)

1 Basic ANOVA concepts

1.1 The Setting

Generally, we are considering a quantitative response variable as it relates to one or more explanatory
variables, usually categorical. Questions which fit this setting:

(i) Which academic department in the sciences gives out the lowest average grades? (Explanatory vari-
able: department; Response variable: student GPA’s for individual courses)

(ii) Which kind of promotional campaign leads to greatest store income at Christmas time? (Explanatory
variable: promotion type; Response variable: daily store income)

(iii) How do the type of career and marital status of a person relate to the total cost in annual claims
she/he is likely to make on her health insurance. (Explanatory variables: career and marital status;
Response variable: health insurance payouts)

Each value of the explanatory variable (or value-pair, if there is more than one explanatory variable) repre-
sents a population or group. In the Physicians’ Health Study of Example 3.3, p. 238, there are two factors
(explanatory variables): aspirin (values are “taking it” or “not taking it”) and beta carotene (values again are
“taking it” or “not taking it”), and this divides the subjects into four groups corresponding to the four cells
of Figure 3.1 (p. 239). Had the response variable for this study been quantitative—like systolic blood pres-
sure level—rather than categorical, it would have been an appropriate scenario in which to apply (2-way)
ANOVA.

1.2 Hypotheses of ANOVA

These are always the same.

H0: The (population) means of all groups under consideration are equal.

Ha: The (pop.) means are not all equal. (Note: This is different than saying “they are all unequal ”!)

1.3 Basic Idea of ANOVA

Analysis of variance is a perfectly descriptive name of what is actually done to analyze sample data ac-
quired to answer problems such as those described in Section 1.1. Take a look at Figures 12.2(a) and 12.2(b)
(p. 746) in your text. Side-by-side boxplots like these in both figures reveal differences between samples
taken from three populations. However, variations like those depicted in 12.2(a) are much less convincing
that the population means for the three populations are different than if the variations are as in 12.2(b). The
reason is because the ratio of variation between groups to variation within groups is much
smaller for 12.2(a) than it is for 12.2(b).
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1.4 Assumptions of ANOVA

Like so many of our inference procedures, ANOVA has some underlying assumptions which should be in
place in order to make the results of calculations completely trustworthy. They include:

(i) Subjects are chosen via a simple random sample.

(ii) Within each group/population, the response variable is normally distributed.

(iii) While the population means may be different from one group to the next, the population standard
deviation is the same for all groups.

Fortunately, ANOVA is somewhat robust (i.e., results remain fairly trustworthy despite mild violations of
these assumptions). Assumptions (ii) and (iii) are close enough to being true if, after gathering SRS samples
from each group, you:

(ii) look at normal quantile plots for each group and, in each case, see that the data points fall close to a
line.

(iii) compute the standard deviations for each group sample, and see that the ratio of the largest to the
smallest group sample s.d. is no more than two.

2 One-Way ANOVA

When there is just one explanatory variable, we refer to the analysis of variance as one-way ANOVA.

2.1 Notation

Here is a key to symbols you may see as you read through this section.

k = the number of groups/populations/values of the explanatory variable/levels of treatment

ni = the sample size taken from group i

xi j = the jth response sampled from the ith group/population.

x̄i = the sample mean of responses from the ith group =
1
ni

ni

∑
j=1

xi j

si = the sample standard deviation from the ith group =
1

ni − 1

ni

∑
j=1

(xi j − x̄i)2

n = the (total) sample, irrespective of groups = ∑k
i=1 ni.

x̄ = the mean of all responses, irrespective of groups =
1
n ∑

i j
xi j

2.2 Splitting the Total Variability into Parts

Viewed as one sample (rather than k samples from the individual groups/populations), one might measure
the total amount of variability among observations by summing the squares of the differences between each
xi j and x̄:

SST (stands for sum of squares total) =
k

∑
i=1

ni

∑
j=1

(xi j − x̄)2.
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This variability has two sources:

1. Variability between group means (specifically, variation around the overall mean x̄)

SSG :=
k

∑
i=1

ni(x̄i − x̄)2, and

2. Variability within groups means (specifically, variation of observations about their group mean x̄i)

SSE :=
k

∑
i=1

ni

∑
j=1

(xi j − x̄i)2 =
k

∑
i=1

(ni − 1)s2
i .

It is the case that
SST = SSG + SSE.

2.3 The Calculations

If the variability between groups/treatments is large relative to the variability within groups/treatments,
then the data suggest that the means of the populations from which the data were drawn are significantly
different. That is, in fact, how the F statistic is computed: it is a measure of the variability between treat-
ments divided by a measure of the variability within treatments. If F is large, the variability between
treatments is large relative to the variation within treatments, and we reject the null hypothesis of equal
means. If F is small, the variability between treatments is small relative to the variation within treatments,
and we do not reject the null hypothesis of equal means. (In this case, the sample data is consistent with
the hypothesis that population means are equal between groups.)

To compute this ratio (the F statistic) is difficult and time consuming. Therefore we are always going to let
the computer do this for us. The computer generates what is called an ANOVA table:

Source SS df MS F

Model/Group SSG k − 1 MSG =
SSG
k − 1

MSG
MSE

Residual/Error SSE n − k MSE =
SSE
n − k

Total SST n − 1

What are these things?

• The source (of variability) column tells us SS=Sum of Squares (sum of squared deviations):

SST measures variation of the data around the overall mean x̄
SSG measures variation of the group means around the overall mean
SSE measures the variation of each observation around its group mean x̄i

• Degrees of freedom

k − 1 for SSG, since it measures the variation of the k group means about the overall
mean
n − k for SSE, since it measures the variation of the n observations about k group means
n − 1 for SST, since it measures the variation of all n observations about the overall mean
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• MS = Mean Square = SS/df :

This is like a standard deviation. Look at the formula we learned back in Chapter 1 for sample stan-
dard deviation (p. 51). Its numerator was a sum of squared deviations (just like our SS formulas), and
it was divided by the appropriate number of degrees of freedom.

It is interesting to note that another formula for MSE is

MSE =
(n1 − 1)s2

1 + (n2 − 1)s2
2 + · · ·+ (nk − 1)s2

k
(n1 − 1) + (n2 − 1) + · · ·+ (nk − 1)

,

which may remind you of the pooled sample estimate for the population variance for 2-sample pro-
cedures (when we believe the two populations have the same variance). In fact, the quantity MSE is
also called s2

p.

• The F statistic = MSG/MSE

If the null hypothesis is true, the F statistic has an F distribution with k − 1 and n − k degrees of
freedom in the numerator/denominator respectively. If the alternate hypothesis is true, then F tends
to be large. We reject H0 in favor of Ha if the F statistic is sufficiently large.

As with other hypothesis tests, we determine whether the F statistic is large by finding a correspond-
ing P-value. For this, we use Table E. Since the alternative hypothesis is always the same (no 1-sided
vs. 2-sided distinction), the test is single-tailed (like the chi-squared test). Neverthless, to read the
correct P-value from the table requires knowledge of the number of degrees of freedom associated
with both the numerator (MSG) and denominator (MSE) of the F-value.

Look at Table E. On the top are the numerator df, and down the left side are the denominator df. In
the table are the F values, and the P-values (the probability of getting an F statistic larger than that if
the null hypothesis is true) are down the left side.

Example: Determine

P(F3,6 > 9.78) = 0.01
P(F2,20 > 5) = between 0.01 and 0.025

Example: A firm wishes to compare four programs for training workers to perform a certain manual task.
Twenty new employees are randomly assigned to the training programs, with 5 in each program. At the
end of the training period, a test is conducted to see how quickly trainees can perform the task. The number
of times the task is performed per minute is recorded for each trainee.

Program 1 Program 2 Program 3 Program 4
9 10 12 9

12 6 14 8
14 9 11 11
11 9 13 7
13 10 11 8

The data was entered into Stata which produced the following ANOVA table.

Analysis of Variance
Source SS df MS F Prob > F

------------------------------------------------------------------------
Between groups 54.95 3 18.3166667 7.04 XXXXXX
Within groups 41.6 16 2.6
------------------------------------------------------------------------

Total 96.55 19 5.08157895

Bartlett’s test for equal variances: chi2(3) = 0.5685 Prob>chi2 = 0.904

The X-ed out P-value is between 0.001 and 0.01 .
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Stata gives us a line at the bottom—the one about Bartlett’s test—which reinforces our belief that the vari-
ances are the same for all groups.

Example: In an experiment to investigate the performance of six different types of spark plugs intended for
use on a two-stroke motorcycle, ten plugs of each brand were tested and the number of driving miles (at a
constant speed) until plug failure was recorded. A partial ANOVA table appears below. Fill in the missing
values:

Source df SS MS F
Brand 5 55961.5 11192.3 2.3744
Error 54 254539.26 4,713.69
Total 59 310,500.76

Note: One more thing you will often find on an ANOVA table is R2 (the coefficient of determination). It
indicates the ratio of the variability between group means in the sample to the overall sample variability,
meaning that it has a similar interpretation to that for R2 in linear regression.

2.4 Multiple Comparisons

As with other tests of significance, one-way ANOVA has the following steps:

1. State the hypotheses (see Section 1.2)

2. Compute a test statistic (here it is Fdf numer., df denom.), and use it to determine a probability of
getting a sample as extreme or more so under the null hypothesis.

3. Apply a decision rule: At the α level of significance, reject H0 if P(Fk−1,n−k > Fcomputed) < α. Do
not reject H0 if P > α.

If P > α, then we have no reason to reject the null hypothesis. We state this as our conclusion along with
the relevant information (F-value, df-numerator, df-denominator, P-value). Ideally, a person conducting the
study will have some preconceived hypotheses (more specialized than the H0, Ha we stated for ANOVA,
and ones which she held before ever collecting/looking at the data) about the group means that she wishes
to investigate. When this is the case, she may go ahead and explore them (even if ANOVA did not indicate
an overall difference in group means), often employing the method of contrasts. We will not learn this
method as a class, but if you wish to know more, some information is given on pp. 762–769.

When we have no such preconceived leanings about the group means, it is, generally speaking, inappro-
priate to continue searching for evidence of a difference in means if our F-value from ANOVA was not
significant. If, however, P < α, then we know that at least two means are not equal, and the door is open
to our trying to determine which ones. In this case, we follow up a significant F-statistic with pairwise
comparisons of the means, to see which are significantly different from each other.

This involves doing a t-test between each pair of means. This we do using the pooled estimate for the
(assumed) common standard deviation of all groups (see the MS bullet in Section 2.3):

ti j =
x̄i − x̄ j

sp

√
1/ni + 1/n j

.

To determine if this ti j is statistically significant, we could just go to Table D with n − k degrees of freedom
(the df associated with sp). However, depending on the number k of groups, we might be doing many
comparisons, and recall that statistical significance can occur simply by chance (that, in fact, is built into
the interpretation of the P-value), and it becomes more and more likely to occur as the number of tests we
conduct on the same dataset grows. If we are going to conduct many tests, and want the overall probability
of rejecting any of the null hypotheses (equal means between group pairs) in the process to be no more
than α, then we must adjust the significance level for each individual comparison to be much smaller than
α. There are a number of different approaches which have been proposed for choosing the individual-test
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significance level so as to get an overall family significance ofα, and we need not concern ourselves with the
details of such proposals. When software is available that can carry out the details and report the results to
us, we are most likely agreeable to using which ever proposal(s) have been incorporated into the software.

The most common method of adjusting for the fact that you are doing multiple comparisons is a method
developed by Tukey. Stata provides, among others, the Bonferroni approach for pairwise comparisons,
which is an approach mentioned in our text, pp. 770-771.

Example: Recall our data from a company looking at training programs for manual tasks carried out by its
employees. The results were statistically significant to conclude that not all of the training programs had
the same mean result. As a next step, we use Bonferroni multiple comparisons, providing here the results
as reported by Stata

Comparison of post-test by program
(Bonferroni)

Row Mean-|
Col Mean | 1 2 3
---------+---------------------------------

2 | -3
| 0.057
|

3 | .4 3.4
| 1.000 0.025
|

4 | -3.2 -.2 -3.6
| 0.038 1.000 0.017

Where the row labeled ‘2’ meets the column labeled ‘1’, we are told that the sample mean response for
Program 2 was 3 lower than the mean response for Program 1 (Row Mean - Col Mean = -3), and that the
adjusted Bonferroni probability is 0.057. Thus, this difference is not statistically significant at the 5% level
to conclude the mean response from Program 1 is actually different than the mean response from Program
2. Which programs have statistically significant (at significance level 5%) mean responses?

Program 3 is different from program 2, with program 3 apparently better.
Program 4 is different from program 1, with program 1 apparently better.
Program 4 is different from program 3, with program 3 apparently better.

Apparently, programs 1 and 3 are the most successful, with no statistically-significant difference between
them. At this stage, other factors, such as how much it will cost the company to implement the two pro-
grams, may be used to determine which program will be set in place.

Note: Sometimes instead of giving P-values, a software package will generate confidence intervals for the
differences between means. Just remember that if the CI includes 0, there is no statistically significant
difference between the means.


