CHEM	115 Transition	MLA #1	Name:	
Part O	ne: Multiple choice question	าร		(2 pt each)
1.	Which of the following does <u>r</u> a) soda pop b) a 15 <i>karat</i> g	n <u>ot</u> describe a solutio old/nickle bracelet	n ? c) atmospheric air	d) chocolate chip cookies
2.	Percent (%) concentration isa) g/molb) mol/L	based on which of the c) mL/mol	e following units x 100% d) g/mL e) r	ő mg/L
3.	Calculations of concentration the of the solvent	typically involve divid <i>Concentratic</i>	ing the or on = (<u>or</u>) of () of so	of the solute by solute lvent
	a) mass or moles; mass d) moles or volume; mass	b) mass or moles;e) volume or moles	volume c) volu s; volume	me or mass; moles
4.	Which of the following molecu a) butanone b) butane	ules would you expect c) butanol d) buta	to be the <u>most</u> hydrop anal e) butanoic ac	hobic? id
5.	Which of the following ionic c solution? a) NH ₄ Cl b) MgS	ompounds produces t 6O4 c) NaBr	he most <u>equivalents of</u> d) LiNO₃ e) KCN	<u>f <i>cation</i> in aqueous</u> N
6.	Which of the following bonds a) Alkenes b) Alkanes	are rotationally ' <i>const</i> c) Alkynes d) a & l	t <i>rained</i> " with regards to b e) a & c	the two carbons involved? f) all of them
7.	 What is the relationship between a) Rotational isomers b) Structural isomers c) Geometric isomers d) none of the above (same relations) 	een the two molecules	s shown below & to the	e right?
8.	What molecular geometry desa) Tetrahedrald) Trigb) Bente) Trigc) Linear	scribes each of the ca Jonal planar Jonal pyramidal	rbons involved in a mo	lecule of <i>cyclohexane</i> ?
9.	Why would the molecule belo a) cyclic hydrocarbons can't o b) it contains an ester bond c) it has too much ring strain d) it has a carbonyl and alcoh e) it has too many oxygens	w be unlikely to exist contain oxygen atoms nol groups	in a natural biomolecul	e? О ОН О ОН
10.	Which of the following molect it represents?	ules requires <i>cis</i> or <i>tra</i>	ans in its name to identi	fy which geometric isomer
a)	b)	c)	d) e) a&d

т

- 11. Aromatic hydrocarbons are unusual molecules in that their structures are flat due to the carbons being in the _____ geometry:
 - a) tetrahedral c) linear e) trigonal pyramidal
 - b) bent d) trigonal planar
- 12. What is wrong with the reaction shown below?
 - a) It is missing a product
 - b) It is missing a reactant $H_2SO_3(aq) \rightarrow H_2O_{(1)} + 2SO_2(q)$
 - c) It has the wrong coefficients
 - d) Physical states are missing
 - e) The arrow points the wrong way

For the questions below, refer to the energy diagram shown to the right. *CIRCLE* the correct letter.

- 13. Which letter represents the total quantity of bond energy left in the products of the reaction?
 - A. B. C. D.
- 14. Which letter represents the <u>change in bond energy</u> over the course of the reaction?
 - A. B. C. D.

- 15. Which quantity would you expect to change if a catalyst were added to this reaction?A. B. C. D.
- 16. Which of the following would <u>not</u> increase the rate of a reaction?
 a) increasing temperature
 b) increasing [reactant]
 c) adding a catalyst
 d) increasing [product]
- 17. What is the **pH** of a solution that contains a hydronium ion concentration $[H_3O^+] = 2.73 \times 10^{-4} \text{ M}$? a) 3.56 b) 2.73 c) 11.37 d) 1.74 e) 5.37
- 18. The reaction shown below describes the role of carbon dioxide and breathing in the blood buffer system. What would happen if a strong base were added to this system?

 $CO_2 + H_2O \rightleftharpoons H_2CO_3 + H_2O \rightleftharpoons HCO_3^- + H_3O^+$ a) $[CO_2]$ would increase b) $[H_2CO_3]$ would increase d) all components except H_2O would increase

19. Which of the following functional groups is likely to be *ionized* in aqueous solution?

20. What is the relative difference in [H₃O⁺] between water (pH 7.2) and ammonia (pH 11.2)? a) 4x b) 100x c) 40x d) 10,000x e) 40,000x

- 21. What functional group is shown in the molecule to the right?
 - a) Ether b) Ester
 - c) Amide d) Sulfhydryl
 - e) Thioester e) Ketothione

22. Which of the following functional groups has the most negative charge at physiological pH (7.2)?

Part Two: Organic Structures & Nomenclature

- 25. Pyruvic acid (CH₃COCOOH) is shown to the right. It is an important intermediate in human metabolism that we will study later this semester. (6 pts)
 - a. <u>Write out the equilibrium reaction</u> for pyruvic acid and its conjugate base when it is dissolved in aqueous solution.

b. If the strong base sodium hydroxide (NaOH) were added to a solution of pyruvic acid at equilibrium, **which direction**—left (toward reactants) or right (toward products)—would the reaction shift?

26. Briefly explain in simple terms why **glucose** (shown below) is highly soluble in water, whereas a similar organic molecule, *cyclohexane-1,2-diol*, is not. (3 pts)

glucose cyclohexane-1,2-diol

(6 pts)

d) N,N-dimethyl-hexanamine

(draw the structure \rightarrow)

28. Eugenol and zingerone are two similar aromatic compounds found in a variety of "essential oils". Both are based on a similar core aromatic group, but have different functional groups that decorate this structure.

a. **Identify the name** of the <u>core aromatic</u> <u>structure</u> that is common to both compounds.

Part Three: Problem Solving Calculations

The nutritional label for **chocolate milk** is shown to the right. Answer the following questions based on this label.

29. Based on the caloric density of fat (9 Cal/gram), <u>calculate the number of</u> <u>Joules</u> of energy that are derived from fat a single serving of chocolate milk.

(4 pts)

Nutrition Facts Serving Size 1 cup (249g) Servings Per Container 8							
Amount Per Serving							
Calories 210	Calories from Fat 80						
	% Daily Value*						
Total Fat 8g	13 %						
Saturated Fat 5	ig 26 %						
Trans Fat 0g							
Cholesterol 30mg 10%							
Sodium 200mg	9%						
Total Carbohydrate 27g 9%							
Dietary Fiber 1	g 5%						
Sugars 25g							
Protein 9g							
Vitamin A 6%	Vitamin C.0%						
Calcium 30%	• Iron 6%						
Vitemin D 20%							
*Percent Daily Values are based on a 2,000 calorie diet.							

30. Drinking a glass of milk is a good treatment for heartburn, which is caused by excess stomach acid leaking into the esophagus. If drinking a glass of milk changed your stomach pH from 2.37 to 6.21 in a volume of 1.25 liters, how many moles of acid would be getting neutralized? (6 pts)

31. A single serving of chocolate milk is 1 cup (= 237 mL). Given this volume and information from the nutritional label, <u>calculate the molarity</u> (**M**) of cholesterol (386.7 g/mol) in chocolate milk. (6 pts)

32. <u>Balance the reaction</u> shown below & <u>calculate the mass</u> of iron (III) oxide (159.69 g/mol) produced from the oxidation of 50.0 grams of pure iron (55.85 g/mol) with oxygen. (9 pts)

 $\underline{\qquad} Fe (s) + \underline{\qquad} O_2(g) \rightarrow \underline{\qquad} Fe_2O_3(s)$

Reference Materials

Periodic Table

1							El	ement	name									18
Hydrogen 1 H 1.01 2.1	2							Atom Symt	ic # pol				13	14	15	16	17	Helium 2 He 4.00
Lithium 3 Li 6.94 1.0	Beryllium 4 Be 9.01 1.5						Av Ele	ectrone	mass gativity	y			Boron 5 B 10.81 2.0	Carbon 6 C 12.01 2.5	Nitrogen 7 N 14.01 3.0	Oxygen 8 0 16.00 3.5	Fluorine 9 F 19.00 4.0	Neon 10 Ne 20.18
Sodium 11 Na 22.99 0.9	Magnesium 12 Mg 24.31 1.2		3	4	5	6	7	8	value 9	10	11	12	Aluminum 13 Al 26.98 1.5	Silicon 14 Si 28.09 1.8	Phosphorus 15 P 30.97 2.1	Sulfur 16 S 32.07 2.5	Chlorine 17 Cl 35.45 3.0	Argon 18 Ar 39.95
Potassium 19 K 39.10 0.8	20 20 Ca 40.08 1.0		Scandium 21 SC 44.96 1.3	Titanium 22 Ti 47.88 1.5	Vanadium 23 V 50.94 1.6	Chromium 24 Cr 52.00 1.6	Manganese 25 Mn 54.94 1.5	26 Fe 55.85 1.8	Cobalt 27 CO 58.93 1.8	Nickel 28 Ni 58.69 1.8	Copper 29 Cu 63.55 1.9	Zinc 30 Zn 65.39 1.6	Gallium 31 Ga 69.72 1.6	Germanium 32 Ge 72.61 1.8	Arsenic 33 As 74.92 2.0	Selenium 34 Se 78.96 2.4	Bromine 35 Br 79.90 2.8	Krypton 36 Kr 83.80 3.0
Rubidium 37 Rb 85.47 0.8	Strontium 38 Sr 87.62 1.0		Yttrium 39 Y 88.91 1.2	Zirconium 40 Zr 91.22 1.4	Niobium 41 Nb 92.91 1.6	Molybdenum 42 Mo 95.94 1.8	Technetium 43 Tc (98) 1.9	Ruthenium 44 Ru 101.07 2.2	Rhodium 45 Rh 102.91 2.2	Palladium 46 Pd 106.42 2.2	47 47 Ag 107.87 1.9	Cadmium 48 Cd 112.41 1.7	Indium 49 In 114.82 1.7	50 50 50 118.71 1.8	Antimony 51 Sb 121.76 1.9	Tellurium 52 Te 127.60 2.1	126.90 2.5	54 54 Xe 131.29 2.6
Cesium 55 CS 132.91 0.7	Barium 56 Ba 137.33 0.9	57-70 *	Lutetium 71 Lu 174.97 1.1	Hafnium 72 Hf 178.49 1.3	Tantalum 73 Ta 180.95 1.5	Tungsten 74 W 183.84 1.7	Rhenium 75 Re 186.21 1.9	Osmium 76 OS 190.23 2.2	Iridium 77 Ir 192.22 2.2	Platinum 78 Pt 195.08 2.2	Gold 79 Au 196.97 2.4	Mercury 80 Hg 200.59 1.9	Thailium 81 TI 204.38 1.8	Lead 82 Pb 207.20 1.8	Bismuth 83 Bi 208.98 1.9	Polonium 84 Po (209) 2.0	Astatine 85 At (210) 2.2	Radon 86 Rn (222) 2.4
Francium 87 Fr (223) 0.7	88 Ra (226) 0.9	89-102 **	Lawrencium 103 Lr (262)	Rutherfordium 104 Rf (261)	Dubnium 105 Db (262)	Seaborgium 106 Sg (263)	Bohrium 107 Bh (262)	Hassium 108 HS (265)	Meitnerium 109 Mt (266)	Ununnilum 110 Uun (271)	Unununium 111 Uuu (272)	Ununbium 112 Uub (277)		Ununquadium 114 Uuq (289)				
	*lanth	nanides	Lanthanum 57 La 138.91 1.1	Cerium 58 Ce 140.12 1.1	Praseodymium 59 Pr 140.91 1.1	Neodymium 60 Nd 144.24 1.1	Promethium 61 Pm (145) 1.1	Samarlum 62 Sm 150.36 1.2	Europium 63 EU 151.97 1.1	Gadolinium 64 Gd 157.25 1.2	Terbium 65 Tb 158.93 1.1	Dysprosium 66 Dy 162.50 1.2	Holmium 67 HO 164.93 1.2	Erblum 68 Er 167.26 1.2	- 69 Tm 168.93 1.3	Ytterblum 70 Yb 173.04 1.1		
	**ac	tinides	Actinium 89 AC (227) 1.1	Thorium 90 Th 232.04 1.3	Protactinium 91 Pa 231.04 1.5	Uranium 92 U 238.03 1.4	Neptunium 93 Np (237) 1.4	Plutonium 94 Pu (244) 1.3	Americium 95 Am (243) 1.3	Curium 96 Cm (247) 1.3	97 97 Bk (247) 1.3	Californium 98 Cf (251) 1.3	Einsteinium 99 ES (252) 1.3	Fermium 100 Fm (257) 1.3	Mendelevium 101 Md (258) 1.3	Nobelium 102 No (259) 1.3		

Table 8-1Common Units of **Energy and Their Conversions**

Unit	Conversion
calorie (cal)	1 cal = 4.184 J
	(exact)
Calorie (Cal)	1 Cal = 1 kcal
(note capital C)	
kilocalorie (kcal)	$1 \text{ kcal} = 10^3 \text{ cal}$

$pH = -log_{10}[H_3O^+]$

$[H_3O^+] = 10^{-pH}$

Polyatomic lons

- Acetate: CH₃CO₂⁻
- Hydrogen carbonate: HCO₃-(also termed bicarbonate)
- Carbonate: CO₃²⁻
- Cyanide: CN⁻
- Hydroxide: OH-
- Hypochlorite: OCI-
- Nitrate: NO₃-
- Nitrite: NO₂⁻
- Phosphate: PO₄³⁻
- Hydrogen phosphate: HPO₄²⁻
- Dihydrogen phosphate: H₂PO₄⁻
- Sulfate: SO₄²⁻
- Sulfite: SO₃²⁻
 Hydronium: H₃O⁺
- Ammonium: NH₄+