Math 355 Homework Problems #1

1. Do the following form subspaces of \(\mathbb{F}_4[x] \)? Prove, or give a counter-example.

 (a) The subset of all polynomials in \(\mathbb{F}_4[x] \) of even degree.

 (b) The subset of all polynomials \(p(x) \) in \(\mathbb{F}_4[x] \) with \(p(0) = 0 \).

 (c) The subset of all polynomials \(p(x) \) in \(\mathbb{F}_4[x] \) with \(p'(0) \neq 0 \).

2. Which of each set below is a spanning set for \(\mathbb{F}_2[x] \)? Justify your answer in each case.

 (a) \(\{1, x - 1, x^2 + 1\} \).

 (b) \(\{x + 2, x - 2, x^2 - 2\} \).

 (c) \(\{1 + 2x + 3x^2, 4 + 5x + 6x^2, 7 + 8x + 9x^2\} \).

3. If \(A \in \mathcal{M}_n(\mathbb{F}) \), the transpose of \(A \), denoted \(A^T \), is the matrix where the \(j \)th column of \(A \) is the \(j \)th row of \(A^T \). Let \(\text{Sym}_n(\mathbb{F}) \subset \mathcal{M}_n(\mathbb{F}) \) denote the set of symmetric matrices. In other words, \(A \in \text{Sym}_n(\mathbb{F}) \) if and only if \(A = A^T \). Let \(\text{Skew}_n(\mathbb{F}) \subset \mathcal{M}_n(\mathbb{F}) \) denote the set of skew-symmetric matrices. In other words, \(A \in \text{Skew}_n(\mathbb{F}) \) if and only if \(A = -A^T \).

 (a) Show that \(\text{Sym}_n(\mathbb{F}) \) is a subspace.

 (b) Show that \(\text{Skew}_n(\mathbb{F}) \) is a subspace.

 (c) Show that \(\mathcal{M}_n(\mathbb{F}) = \text{Sym}_n(\mathbb{F}) \oplus \text{Skew}_n(\mathbb{F}) \).

4. Write \(\mathbb{F}_5[x] \) as the direct sum of 6 one-dimensional subspaces.

5. Write \(\mathcal{M}_2(\mathbb{F}) \) as the direct sum of 4 one-dimensional subspaces.

6. Let \(W_1, W_2, \ldots, W_n \) be a collection of subspaces of the vector space \(V \). Show that

\[
\bigcap_{j=1}^{n} W_j = W_1 \cap W_2 \cap \cdots \cap W_n
\]

is a subspace.