Last lemma to prove:

Lemma 1. If Y is a complete and consistent set of formulas, then there exists Y-satisfiable.

The truth assignment h assigns $h(P_i) = \text{True}$ if $\vdash Y P_i$ and $h(P_i) = \text{False}$ otherwise. Then we prove by induction on S that $h(S) = \text{True}$ iff $S \in Y$.

Theorem 1 (Compactness Theorem). If Y is a set of formulas such that every finite subset of Y is Y-satisfiable, then Y is Y-satisfiable.

Examples.

Homework

- No further homework.
- Important reminder - test is Tuesday, October 5.