September 27 — Soundness of F_T

1. Notation: If X is a set of formulas and S a sentence, $X \vdash_T S$ means that there is a proof in F_T of S from premises in X. $X \models_T S$ means that S is a tautological consequence of the formulas in X.

2. A truth assignment is a function h that assigns to every propositional variable a value in the set $\{\text{True}, \text{False}\}$. If h is a truth assignment, we extend h to a function \hat{h} that maps all propositional formulas into the set $\{\text{True}, \text{False}\}$. The extension is by induction on the definition of the formula (“truth-tables”). So $X \models_T S$ means that for every truth-assignment h, if $\hat{h}(P) = \text{True}$ for all $P \in X$ then $\hat{h}(S) = \text{True}$.

3. The Soundness Theorem for propositional logic:

 Theorem 1 (Soundness) Suppose that X is a set of formulas and S a formula. If $X \vdash_T S$ then $X \models_T S$.

4. The proof is a proof by induction on the proof in F_T of S. The book casts the proof as a proof by contradiction. That’s okay but a bit inelegant.

5. Let S_1, S_2, \ldots, S_k be the lines of the proof of S. The key fact to prove is the following: For every $i \leq k$ if Y is the set of premises for step i, then $Y \models S_i$.

6. The proof has boatloads of cases depending on which rule was used to prove S_i.

Homework

- Read LPL 8.3 and 17.1.
- Do LPL problems 8.41 and 8.42.