November 11 - Noncomputable languages

1. $K = \{ M \mid M(M) \downarrow \}$.
2. K is not computable.
3. K is computably enumerable.
4. Showing sets noncomputable:
 (a) A is reducible to B (written $A \leq_m B$) if there is a computable function f such $\sigma \in A$ iff $f(\sigma) \in B$
 (b) If A is reducible to B and B is computable then A is computable.
 (c) $\text{TOT} = \{ M \mid \forall \sigma (M(\sigma) \downarrow) \}$
 (d) TOT is not computable (since K is reducible to TOT).
 (e) $\text{FIN} = \{ M \mid M(\sigma) \downarrow \text{ for only finitely many } \sigma \}$.
 (f) FIN is not computable.
5. Let $\text{FOL-SAT} = \{ S \mid S \text{ is a satisfiable sentence of first-order logic} \}$ (here fix a first-order language L) Turing showed that FOL-SAT is not computable by showing that K is reducible to FOL-SAT. This shows that the Entscheidungsproblem is not decidable.

Homework

- Read Notes Section 4.6.
- Do problems 4.6.2,3. (Hint: in both cases, show K is reducible to the given language.)
- Suppose that A is a computably enumerable set. Show that $A \leq_m K_1$.