Solutions to HWs #18, #19 and #20.

I. To see that \(f \) is a function, all we need is the definition of injectivity (one-to-oneness): that \(f(b) = f(a) \Rightarrow b = a \). Thus, \(f^{-1}(E) \) where \(E \) is any singleton set (i.e., set comprised of one element) is again a singleton set. It may also be observed that the surjectivity of \(f \) implies that the domain of \(f^{-1} \) is all of \(Y \). Like \(f \), \(f^{-1} \) is surjective as well, a natural by-product of the fact that \(f \) is defined on all of \(X \). Another fact about \(f^{-1} \) is that it is injective (otherwise \(f \) would not be a function.)

To see that \(f^{-1} \) is continuous, let \(E \subset X \) be closed. Since \(X \) is compact, \(E \) is compact (Thm. 2.35) and, by Thm. 4.14, \(F(E) \) is compact (by continuity of \(f \)). By Thm. 2.34, \(f(E) \) is closed. But, \(f(E) = f^{-1}(E) \), and thus we have shown that the preimage under \(f^{-1} \) of an arbitrary closed set is closed.

5.17 By Taylor’s Thm. \(\exists t \in (-1, 0) \) s.t.
\[
f(-1) = \frac{f(0)}{0!} (-1)^0 + \frac{f'(0)}{1!} (-1)^1 + \frac{f''(0)}{2!} (-1)^2 + \frac{f'''(t)}{3!} (-1)^3.
\]
Using the values supplied, this expression becomes
\[
f^{(3)}(t) = 3f''(0). \quad (1)
\]
Another application of Taylor’s Thm., this time on the right side of \(x = 0 \), gives that \(\exists s \in (0, 1) \) s.t.
\[
f(1) = \frac{f(0)}{0!} (1)^0 + \frac{f'(0)}{1!} (1)^1 + \frac{f''(0)}{2!} (1)^2 + \frac{f'''(s)}{3!} (1)^3.
\]
Again using the values supplied, we have
\[
-f^{(3)}(s) = 3f''(0) - 6. \quad (2)
\]
Subtracting equation (2) from (1), we have
\[
f^{(3)}(t) + f^{(3)}(s) = 6,
\]
which means that at least one of the numbers \(f^{(3)}(t), f^{(3)}(s) \) is \(\geq 3 \).

4.4 That \(f(E) \) is dense in \(f(X) \) is a corollary to Thm. S.19. To see this, let \(a \in X \). We will show that \(f(a) \in \overline{f(E)} \). \(E \) is dense in \(X \) \(\Rightarrow \exists \) a sequence \((x_n) \) in \(E \) s.t. \(x_n \to a \). By S.19, the continuity of \(f \) at \(a \) implies \(f(x_n) \to f(a) \). But each \(f(x_n) \in f(E) \), so \(f(a) \in \overline{f(E)} \).
We already have that \(f(x) = g(x) \) for \(x \in E \). Let \(a \in E^c \), which means \(a \in E' \) (denseness of \(E \)). Let \((x_n)\) be a sequence in \(E \) with \(x_n \to a \). Then

\[
\begin{align*}
g(a) &= \lim_n g(x_n) \quad \text{(continuity of } g) \\
 &= \lim_n f(x_n) \quad \text{(since } f = g \text{ on } E) \\
 &= f(a) \quad \text{(continuity of } f) .
\end{align*}
\]