Finite dimensionality of \mathcal{Z}-boundaries and its consequences

Molly Moran

University of Wisconsin–Milwaukee

Abstract. The rich study of boundaries of CAT(0) and hyperbolic groups led M. Bestvina to formalize the concept of a group boundary by defining a \mathcal{Z}-structure on a group. In his original definition, a \mathcal{Z}-structure on a group G is a pair of spaces (\hat{X}, Z) where \hat{X} is a compact ER, Z is a \mathcal{Z}-set in \hat{X}, G acts freely, cocompactly, and properly on $X = \hat{X} - Z$ and the collection of G-translates of a compact set in X forms a null sequence in \hat{X}. In this setting, Z is finite dimensional. We show that this result can be extended to the case that \hat{X} is an AR, that is when \hat{X} need not be finite dimensional. We also explore results that can be obtained by knowing the \mathcal{Z}-boundary is finite dimensional.