Math 321: Linear Algebra

T. Kapitula *
Department of Mathematics and Statistics
University of New Mexico

September 8, 2004

Textbook: Linear Algebra,by J. Hefferon

*E-mail: kapitula@math.unm.edu



Prof. Kapitula, Spring 2003

CONTENTS

1. Linear Systems

1.1. Solving Linear Systems . . . . . . . . . . . e
1.1.1. Gauss’ Method . . . . . . . . . e
1.1.2. Describing the Solution Set . . . . . . .. . ... L o
1.1.3.  General=Particular+Homogeneous . . . . . . . . . . ... ... L oL

1.3. Reduced Echelon Form . . . . . .. .. . ..
1.3.1. Gauss-Jordan Reduction . . . . . . . ... L oo
1.3.2. Row Equivalence . . . . . . . . . . . e

. Vector Spaces

2.1. Definition of Vector Space . . . . . . . . . e
2.1.1. Definition and Examples . . . . . . . . . ..o oL
2.1.2. Subspaces and Spanning Sets . . . . . ... Lo o

2.2. Linear Independence . . . . . . . . . . e e e
2.2.1. Definition and Examples . . . . . . . . ... Lo

2.3. Basis and Dimension . . . . . . . .. L e
2.3.1. Basis. . . ... e e
2.3.2. Dimension . . . . . ... e e e
2.3.3. Vector Spaces and Linear Systems . . . . . . . . ... L oo
2.3.4. Combining Subspaces . . . . . . . ..

. Maps Between Spaces

3.1. TsomorphiSms . . . . . . . . . e e
3.1.1. Definition and Examples . . . . . . . . ... L e
3.1.2. Dimension Characterizes Isomorphism . . . . . .. ... .. ... ... .. ...

3.2. Homomorphisms . . . . . . . . . e
3.2.1. Definition . . . . . . Lo
3.2.2. Rangespace and Nullspace . . . . . .. . .. . . o

3.3. Computing Linear Maps . . . . . . . . . . . . e
3.3.1. Representing Linear Maps with Matrices. . . . . . . .. ... ... ... ... ..
3.3.2. Any Matrix Represents a Linear Map . . . . . . . . . ... ... ... ... ... ..

3.4. Matrix Operations . . . . . . . . . . . e e
3.4.1. Sums and Scalar Products . . . . . . . ... oo
3.4.2. Matrix Multiplication . . . . . . . .. .
3.4.3. Mechanics of Matrix Multiplication . . . . . . . . . . ... ... L.
344, INVerses . . . . .. e e e

3.5. Changeof Basis . . . . . . . . . . . e
3.5.1. Changing Representations of Vectors . . . . . . . . . ... ... ... ... ...
3.5.2. Changing Map Representations . . . . . . . . . . . ... ... .. ... ... ...

3.6. Projection . . . . . . . e
3.6.1. Orthogonal Projection into a Line . . . . . . . ... ... ... ... ...
3.6.2. Gram-Schmidt Orthogonalization . . . . . . . . . .. ... ... ... ... .......
3.6.3. Projection into a Subspace . . . . .. ... L Lo
Topic: Line of Best Fit . . . . . . . . . . .

. Determinants

4.1. Definition . . . . . . oL
4.1.1. Exploration . . . . . . .. e
4.1.2. Properties of Determinants . . . . . . . . . .. ...

4.3. Other Formulas . . . . . . . . . . e
4.3.1. Laplace’s Expansion . . . . . . . . .. L

CO N N Uk NNDN

23
23
23
25
26
26
27
29
29
31
32
32
33
34
34
35
35
36
37
37
38
40
41



Math 321 Class Notes 2

Topic: Cramer’s Rule . . . . . . . . . . e 45

5. Similarity 47
5.2, Similarity . . . . .. e 47
5.2.1. Definition and Examples . . . . . . . . . ... 47

5.2.2. Diagonalizability . . . . . . . . ..o 48

5.2.3. Eigenvalues and Eigenvectors . . . . . . . ... L L L 49

Topic: Stable Populations . . . . . . . . .. e 51
Topic: Method of Powers . . . . . . . . . . . e 51
Topic: Symmetric Matrices . . . . . . . . oL L 52

1. LINEAR SYSTEMS

Two examples:

(a) Network flow. The assumption is that flow into nodes equals flow out of nodes, and that branches connect
the various nodes. The nodes can be thought of as intersections, and the branches can be thought of as

streets.
60
X2 50
@
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(b) Approximation of data - find the line of best fit (least-squares). For example, find a line which best fits
the points (1,0),(2,1), (4,2), (5,3). The answer is y = —=3/5+ 7/10z.

1.1. Solving Linear Systems

1.1.1. Gauss' Method

Definition 1.1. A linear equation is of the form
a1x1 + asxo + -+ - + apx, = d,
where
® 1y,...,x,: variables

® aj,...,a, € R: coefficients
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e d € R: constant.

A linear system is a collection of one or more linear equations. An n-tuple (s1,...,s,) is a solution if
T1 = S1,...,%Ty = Sy solves the system.

Example. (i) 3x; — 425 + 6z5 = 5: linear equation

(ii) z1we — 3x3 = 4: nonlinear equation
Example. The system
201 + 22 =8, —2x1 4+ 3x2 =16

has the solution (z1,z2) = (1,6).

Theorem 1.2 (Gauss’ Theorem). If a linear system is changed from one to another by the operations
(1) one equation is swapped with another (swapping)

(2) an equation is multiplied by a nonzero constant (rescaling)

(3) an equation is replaced by the sum of itself and a multiple of another (pivoting)

then the two systems have the same set of solutions.

Remark 1.3. These operations are known as the elementary reduction operations, row operations, or
Gaussian operations.

Why? The idea is to convert a given system into an equivalent system which is easier to solve.
Example. Work the system
31’1 + 61’2 = 12, Tr1 — 21’2 = 4,

which has the solution (4, 0).

Definition 1.4. In each row, the first variable with a nonzero coefficient is the row’s leading variable.
A system is in echelon form if each leading variable is to the right of the leading variable in the row
above it.

Example. Upon using the Gaussian operations one has that

T — X3 = 0 xr1 — T3 = 0
31‘1 + X2 = 1 — i) = 4
Tr1 — Ty — T3 = —4 r3 = -1

The solution is (—1,4, —1).

Theorem 1.5. A linear system has either
(1) no solution (inconsistent)

(2) a unique solution

(3) an infinite number of solutions.

In the latter two cases the system is consistent.
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Illustrate this graphically with systems of two equations in two unknowns.

7~
/ /

Unique solution Inconsistent Infinitely many solutions

1.1.2. Describing the Solution Set

Definition 1.6. The variables in an echelon-form linear system which are not leading variables are free
variables.

Example. For the system
Ty +2x9 —4dxy =2, x3—Try =38

the leading variables are z1,x3, and the free variables are x5, x4. The solution is parameterized by the free

variables via
1 =2 —2x9 +4x4, x3=8+4 Txy,

so that the solution set is
{(2 = 229 + 4x4, 29,8 4+ Txy,24) : T2, 24 € R}.

Definition 1.7. An m x n matrix A is a rectangular array of numbers with m rows and n columns. If
the numbers are real-valued, then we say that A = (a; ;) € R™*", where q; ; € R is the entry in row ¢
and column j.

Example. Find different entries for the matrix
1 3 —4
A= ( -2 6 -3 )

Definition 1.8. A vector (column vector) is a matrix with a single column, i.e., @ € R"*! := R?. A
matrix with a single row is a row vector. The entries of a vector are its components.

Remark 1.9. For vectors we will use the notation @ = (a;) € R".

Definition 1.10. Consider two vectors @ = (u;),? = (v;) € R™. The algebraic operations are:
(i) vector sum: @+ ¥ = (u; + v;)

(ii) scalar multiplication: r¢' = (rv;) for any r € R.




5 Prof. Kapitula, Spring 2003

Consider the linear system
r1 —3xy+2x3=8, x1—x3=05H, —2x9+4+x3=0T.

Matrices associated with this system are

1 -3 2 1 -3 218
1 0 -1 (coefficient matrix), 1 0 —-1]5 (augmented matrix).
0 -2 1 0 -2 1|7

The Gaussian operations can be performed on the augmented matrix to put the system into echelon form:

1 -3 218 1 -3 2 8
1 0 =115 — 1 0 1 1] -1
0 -2 117 0 0 1]-5

Why? It eases the bookkeeping. The solution is s = (0, —6,—5), which can be written in vector notation as

0
§=1 —6
-5

Example. The solution to the system
T, +2x9 —4xy =2, x3—Trgy =8
is
{(2 — 229 +4xy4,29,8 + 7$4,$4) P T2, X4 € R}

Using vector notation yields

o O N

+ 29 + x4 : $27$4€R}.

o
OO =N
— O

It is clear that the system has infinitely many solutions.

1.1.3. General=Particular+Homogeneous

In the previous example it is seen that the solution has two parts: a particular solution which depends
upon the right-hand side, and a homogeneous solution, which is independent of the right-hand side. We will
see that this feature holds for any linear system. Recall that equation j in a linear system has the form

;121 + -+ AjpTy = dj~

Definition 1.11. A linear equation is homogeneous if it has a constant of zero. A linear system is
homogeneous is all of the constants are zero.

Remark 1.12. A homogeneous system always has at least one solution, the zero vector 0.

Lemma 1.13. For any homogeneous linear system there exist vectors 51, ceey ﬁk such that any solution
of the system is of the form = .
T=c1bi+--cBr, c1,...,c €R

Here k is the number of free variables in an echelon form of the system.
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Definition 1.14. The set {0151 + - ckgk D c1,...,cp € R} is the span of the vectors {51, e ,Bk}

Proof: The augmented matrix for the system is of the form (A|0), where A € R™*"™. Use Gauss’ method to
reduce the system to echelon form. Furthermore, use the Gauss-Jordan reduction discussed in Section 3.1 to
put the system in reduced echelon form. The coefficient associated with each leading variable (the leading
entry) will then be one, and there will be zeros above and below each leading entry in the reduced matrix.
For example,

100 6
010 4
A=1001 -3
000 0

In row j the reduced system is then of the form
Zg, + 50412041+ -+ ajpry =0,
which can be rewritten as
ey = =05 0;41%0;41 — -~ AjnTn.

Since the system is in echelon form, ¢;_1 < ¢; < f;41. Suppose that the free variables are labelled as
Zf ..., Ty Since the system is in reduced echelon form, one has that in the above equation a;,, +; = 0 for
any ¢ > 1 such that wy,1; is a leading variable. Thus, after a renaming of the variables the above equation
can be rewritten as

Teo; = 6j7f1xfl + ﬂj,kafk'

The vectors ﬁj7 j=1,...,k, can now be constructed, and in vector form the solution is given by

r= xflﬁl +F xfk5k~

Lemma 1.15. Let p’ be a particular solution for a linear system. The solution set is given by

{7+ h : h is a homogeneous solution}.

Proof: Let s be any solution, and set h=5— p. In row j we have that

aji(s1—p1) + -+ ajn(sn —pn) = (aj181+  +ajnsn) — (@101 + -+ + ajnpn)
= dj—d,

so that h = §— p solves the homogeneous equation.
Now take a vector of the form p'+ h, where p'is a particular solution and h is a homogeneous solution.
Similar to above,

aji(pr+hy) + -+ ajn(pn +ha) = (aj1p1+ -+ ajnpn) + (aj1h1 + - + ajnhn)
= dj +0
= dj?
so that §=p+ h solves the system. O

Remark 1.16. While a homogeneous solution always exists, this is not the case for a particular solution.
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Example. Consider the linear system

T + z34+ x4=-1 T + xz3t+x4= -1

2x1 — X9 + 4= 33— To + 223 + x4 = 5

T1+To+3x3+2x4= b 0=0b+1

The homogeneous solution is given by
-1 -1
- —2 -1
h =x3 1 + 4 0 , x3,x4 €R.

0 1

If b = —1, the solution set is given by & = p+ h.

Definition 1.17. A square matrix is nonsingular if it is the coefficient matrix for a homogeneous system
with the unique solution & = 0. Otherwise, it is singular.

Remark 1.18. In order for a square matrix to be nonsingular, it must be true that for the row-reduced
matrix there are no free variables. Consider the two examples:

10 -1 1 00
A—lo1 2|, B—1{o0 10
00 0 00 1

The homogeneous system associated with A has infinitely many solutions, whereas the one associated with
B has only one.

1.3. Reduced Echelon Form

1.3.1. Gauss-Jordan Reduction

Definition 1.19. A matrix is in reduced echelon form if
(a) it is in echelon form
(b) each leading entry is a one

(c¢) each leading entry is the only nonzero entry in its column.

Definition 1.20. The Gauss-Jordan reduction is the process of putting a matrix into reduced echelon
form.
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Example. Consider

1 2 3|4 1 2 3|4 1 0 —-1|-2
5 6 7 ] echelon 01 213 reduced echelon 0 1 9 3
9 10 1112 0 0 0f0 0 0 0 0
The solution is then given by
-2 1
T = 3 + 1 -2 , €1 € R.
0 1

Remark 1.21. The above coeflicient matrix is singular.

Definition 1.22. Two matrices are row equivalent if they can be row-reduced to a common third matrix
by the elementary row operations.

Example. This can be written as A — C «— B, i.e., from above

1 2 3 4 1 0 -1 -2 1 2 3 4
A=15 6 7 8 , B=1 01 2 31, C=(01 2 3
9 10 11 12 00 0 O 0 0 0O

Remark 1.23. (a) Elementary row operations are reversible.

(b) If two coefficient matrices are row equivalent, then the associated homogeneous linear systems have the
same solution.

1.3.2. Row Equivalence

Definition 1.24. A linear combination of the vectors 1, ..., T, is an expression of the form

E Cifl' = lel + 4 Cnfn,
%

where c¢1,...,¢c, € R.

Remark 1.25. The span of the set {Z1,...,Z,} is the set of all linear combinations of the vectors.

Lemma 1.26 (Linear Combination Lemma). A linear combination of linear combinations is a linear
combination.

Proof: Let the linear combinations Zz c1,;Z; through ZZ Cm,iT; be given, and consider the new linear

combination
n n
dl <Z Cl,iji> + -+ d'm <Z Cm,ii:i> .
i=1 i=1

Multiplying out and regrouping yields

(i dici,1> T+ + (i dici,n> Tn,
im1 i—1

which is again a linear combination of Z1, ..., Z,. O
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Corollary 1.27. If two matrices are row equivalent, then each row of the second is a linear combination
of the rows of the first.

Proof: The idea is that one row-reduces a matrix by taking linear combinations of rows. If A and B are
row equivalent to C, then each row of C' is some linear combination of the rows of A and another linear
combination of the rows of B. Since row-reduction is reversible, one can also say that the rows of B are
linear combinations of the rows of C. By the Linear Combination Lemma one then gets that the rows of B
are linear combinations of the rows of A. O

Definition 1.28. The form of an m x n matrix is the sequence (¢1,...,¢,,), where ¢; is the column
number of the leading entry if row 4, and ¢; = co if row 4 has no leading entry (i.e., it is a zero row).

Example. If

1 20 4
A=0 o0 1 -3 |,
000 0

then the form is (1,3, 00).

Lemma 1.29. If two echelon form matrices are row equivalent, then their forms are equal sequences.

Remark 1.30. For a counterexample to an ”if and only if” statement, consider

1 0 -1 1 0 1
A=1 0 1 21, B=| 01 -2
0 0 0 0 0 0

Both have the form (1,2, 00), yet the matrices are clearly not row equivalent.

Proof: Let B,D € R™*™ be row equivalent. Let the form associated with B be given by (¢1,...,¢), and
let the form associated with D by given by (k1, ..., k). Let the rows of B be denoted by Si,..., Bm, with

Bi = (Bi1s---»Bjm),
and the rows of D by d1,...,0d,,, with
0 = (0j,15-++0j,m)s
We need to show that ¢; = k; for each ¢. Let us first show that it holds for ¢ = 1. The rest will follow by
an induction argument (Problem 2.22). If 3, is the zero row, then since B is in echelon form the matrix B
is the zero matrix. By the above corollary this implies that D is also the zero matrix, so we are then done.
Therefore, assume that $; and §; are not zero rows. Since B and D are row equivalent, we then have that

B1 = 5101 + 5200 + -+ + 5,0,

or
m
B = E 50,53
i=1
in particular,

m
B = E 50,0, -
i=1

By the definition of the form we have that 3; ; = 0 if j < ¢, and (1, # 0. Similarly, d;; = 0 if j < &y,
and 015, # 0. If {; < k; then the right-hand side of the above equation is zero. Since 31, # 0, this then
clearly implies that ¢; > ki. Writing §; as a linear combination of (31, ..., (3, and using the same argument
as above shows that ¢; < ky; hence, ¢1 = k;. O



Math 321 Class Notes 10

Corollary 1.31. Any two echelon forms of a matrix have the same free variables, and consequently the
same number of free variables.

Lemma 1.32. Each matrix is row equivalent to a unique reduced echelon form matrix.

Example. Suppose that

1 0 -3 1 0 -2
A— [ 0 1 21, B— | 01 31,
00 o0 00 0

(a) Are A and B row equivalent? No.

(b) Is either matrix nonsingular? No.
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2. VECTOR SPACES

2.1. Definition of Vector Space

2.1.1. Definition and Examples

Definition 2.1. A vector space over R consists of a set V along with the two operations ‘+’ and ‘-’
such that

(a) if @,v,w € V, then ¥+ & € V and

S

W+
o (V+W)+u=0+(W+a)
e there is a 0 € V such that 7+ 0 = @ for all ¥ € V (zero vector)

o U+ W=

e for each ¥ € V there is a @ € V such that 7+ @ = 0 (additive inverse)

(b) if r,s € Rand ¥,W € V, then r- ¢ € V and

Example. V = R" with ¢+ & = (v; + w;) and r - ¥ = (rv;).
Example. V = R™*" with A+ B = (a;; + b; ;) and r- A = (ra; ;).
Example. V = &, = {Z?ZO a;x* : ag,...,a, € R} with (p+q)(z) = p(x) + q(z) and (r - p)(x) = rp(x).

Remark 2.2. Theset V = P, = {p € &, : n € N} is an infinite-dimensional vector space, whereas &,
is finite-dimensional.

Example. V = {3} ja;cos(ib) : ag,...,an, € R} with (f + g)(z) = f(z) + g(z) and (r- f)(z) = rf(z).
Example. V = R with z +y = 2y and 7 - = ". We have that with 0 =1 this is a vector space.

Example. V = R? with
mw(”l“”l), m7<””1>.
V2 + w2 V2
The answer is no, as the multiplicative identities such as (r +s) - ¥ =r -0+ s- U are violated.
Example. V = R? with
G = V1 + wy T = U1
o V2 + wa ’ - O ’

The answer is no, as there is no multiplicative identity.

Example. Theset {f : R— R : f”+ f =0} is a vector space, whereas the set {f : R—>R : f"+ f =1}
is not.

2.1.2. Subspaces and Spanning Sets
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Definition 2.3. A subspace is a subset of a vector space that is itself a vector space under the inherited
operations.

Remark 2.4. Any vector space V has the trivial subspace {6} and the vector space itself as subspaces.
These are the improper subspaces. Any other subspaces are proper.

Lemma 2.5. A nonempty S C V is a subspace if Z,4y € S implies that r- &+ s-y € S for any r,s € R.

Proof: By assumption the subset S is closed under vector addition and scalar multiplication. Since S C V/
the operations in S inherit the same properties as those operations in V; hence, the set S is a subspace. [

Example. Examples of subspaces are
(a) S={F€R3: 21 + 229 + 523 =0}

(b) S =1{pe Py : p(3) =0}

(¢c) S={AeR"™™ : q;; =0 for ¢ > j} (upper triangular matrices)

(d) S={AeR™™™ : q;; =0for i < j} (lower triangular matrices)

(e) If A e R™™", the trace of A, denoted trace(A), is given by trace(A) =, a; ;. The set

S ={AeR"™" : trace(A) = 0}

Definition 2.6. If S = {Z,...,Z,}, the span of S will be denoted by [5].

Remark 2.7. From now on the multiplication r - £ € V will be written r# € V, where the multiplication
will be assumed to be the multiplication associated with V.

Lemma 2.8. The span of any nonempty subset is a subspace.

Proof: Let 4,7 € [S] be given. There then exist scalars such that
’(I:ZTifi, U= Zs,i}
i i
For given scalars p,q € R one then sees that

pu+qv=p (Z Ti@) +q <Z S'sz> = (pri + gs:)s,

so that p@l + q¥ € [S]. Hence, [S] is a subspace. O

Example. The set of solutions to a homogeneous linear system with coefficient matrix A will be denoted
by N (A), the null space of A. It has been previously shown that there is a set of vectors S = {f31,..., 0k}
such that N'(A) = [S]. Hence, N'(A) is a subspace.
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2.2.  Linear Independence

2.2.1. Definition and Examples

Definition 2.9. The vectors v7,...,U, € V are linearly independent if and only if the only solution to
01171+"‘+Cn17n:6

is ¢ = --- = ¢, = 0. Otherwise, the vectors are linearly dependent.

Example. (a) {0y, 7,73} C R?, where

1 -5 3
fi=| 3|, ®m=[ -8, %=| -5 |,
-1 2 3

is a linearly dependent set, as 7Tvh + 205 + U5 = 0

(d) {1+ 2,1 —x,1 -3z +2%} C P, is a linearly independent set

Lemma 2.10. If S C V and ¥ € V is given, then

[S] =[S U{¥}] if and only if ¥ € [5].

Proof: If [S] = [S U {7}], then since ¢ € [S U {U}] one must have that ¥ € [5].
Now suppose that ¥ € [S], with S = {Z1,...,Z,}, so that ¥ = ), ¢;@;. If @ € [S U {U}], then one can
write @ = do¥ + ), d;Z;, which can be rewritten as

W= (doci + d;)&; € [S].

K2

Hence, [S U {v}] C [S]. It is clear that [S] C [S U {7}]. O

Lemma 2.11. If S C V is a linearly independent set, then for any ¢ € V the set S U {¢} is linearly
independent if and only if U ¢ [S].

Proof: Let S = {Z,...,Z,}. If ¥ € [S], then 0 = ", ¢;@;, so that -0+ >, ;7; = 0. Hence, S U {v} is a
linearly dependent set.

Now suppose that S U {¢} is a linearly dependent set. There then exist constants cy,...,¢,, some of
which are nonzero, such that ¢yt + >, ¢;7; = 0. If co =0, then ), ¢;7; = 6, which contradicts the fact that
the set S is linearly independent. Since ¢y # 0, upon setting d; = —¢; /co one can then write ¥ = )", d;@;, so
that ¢ € [S]. O

Corollary 2.12. Let S = {#1,...,Z,} CV, and define
Slz{fl}, Sj:Sj_lLJ{fj}j:Z...,n.

S is linearly dependent set if and only if there is an 1 < ¢ < n such that the set Sy_1 is a linearly
independent set and Sy is a linearly dependent set.
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Remark 2.13. In other words, &y = Ef;ll CiT;.

Example. In a previous example we had S = {#, U2, U3} with S = {¥, T2} being a linearly independent
set and Sy U {¥3} being a linearly dependent set. The above results imply that [Se] = [S].

Theorem 2.14. Let S = {&,...,Z,} C V. The set S has a linearly independent subset with the same
span.

Proof: Suppose that S is not a linearly independent set. This implies that for some 2 < ¢ < n that
Ty = Zf;ll ¢;%;. Now define 8" = {#1,...,Zr—1,Zo41,--.,%n}. Since S = S U {Z} and &, € [9'], one
has that [S] = [S’]. When considering S/, remove the next dependent vector (if it exists) from the set
{Zo41,...,Zn}, and call this new set S”. Using the same reasoning as above, [S’] = [S”], so that [S] = [S"].
Continuing in this fashion and using an induction argument, we can then remove all of the linearly dependent
vectors without changing the span. O

2.3. Basis and Dimension

2.3.1. Basis

Definition 2.15. The set S = {51, o, .. .} is a basis for V if
(a) the vectors are linearly independent

(b) V' =1[5]

Remark 2.16. A basis will be denoted by (51, 52, S

Definition 2.17. Set €; = (ej;) € R™ to be the vector which satisfies e;; = d; ;. The standard basis
for R™ is given by (€1,...,€y).

Remark 2.18. A basis is not unique. For example, one basis for R? is the standard basis, whereas another

is
1 2
()3
Example. (a) Two bases for &3 are (1,z,2%,23) and (1 — 2,1+ 2,1+ 2 + 22,2 + 23).

(b) Consider the subspace S C R**? which is given by

S = {A c R2X2 say + 2(],2’2 =0, a1 — 30,271 = O}

-2 0 0 3
Bzcl( 0 1>+62<1 O>7

and the two above matrices are linearly independent, a basis for S is given by

(1) 0)

Since any B € S is of the form
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Lemma 2.19. The set S = {51, e ,ﬁn} is a basis if and only if each ¥ € V' can be expressed as a linear
combination of the vectors in S in a unique manner.

Proof: If S is a basis, then by definition @' € [S]. Suppose that ¥ can be written in two different ways, i.e.,

3

One clearly then has that ), (c; — di)ﬁi = 0, which, since the vectors in S are linearly independent, implies
that ¢; =d; fori=1,...,n.

Suppose that V' = [S]. Since 0= >0 5_;-, and since vectors are expressed uniquely as linear combinations

of the vectors of S, by definition the vectors in .S are linearly independent. Hence, S is a basis. O
Definition 2.20. Let B = <§1, e ,5n> be a basis for V. For a given ¥ € V' there are unique constants
C1,...,¢q such that ¥ =), ¢;3;. The representation of ¢ with respect to B is given by

C1
C2
Repp (V) :== [ .
cn ) g
The constants c1, ..., c, are the coordinates of v with respect to B.

Example. For 3, consider the two bases B = (1,z,2%,2%) and D = (1 —x, 1+, 1+ 2z + 22,2+ 23). One
then has that
1

Repg(1 — 2z + 2°) = . Repp(l—2z+2%) =

|
—= O N
—_
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2.3.2. Dimension

Definition 2.21. A vector space is finite-dimensional if it has a basis with only finitely many vectors.

Example. An example of an infinite-dimensional space is &, which has as a basis (1,z,...,2",...).

Definition 2.22. The transpose of a matrix A € R™>*", denoted by AT € R"*™_ is formed by inter-
changing the rows and columns of A.

Example.

2
5

;)

Theorem 2.23. In any finite-dimensional vector space all of the bases have the same number of ele-
ments.

1 4 )
A= 2 5 —>AT:(4
3 6

Proof: Let B = <51, e ,Hk> be one basis, and let D = (51, e ,5@) be another basis. Suppose that k > ¢. For

eachi=1,...,k we can write §; = > aimjg;-, which yields a matrix A € R¥**. Now let & € V be given. Since
B and D are bases, there are unique vectors Repy(7) = ©Z = (vP) € R¥ and Rep, (¥) = vP = (vP) € R*
such that
k ‘
- B7 D
i=1 j=1

The above can be rewritten as , N

> (st ) - 3000

j=1 \i=1 j=1

This then implies that the vector 7 is a solution to the linear system with the augmented matrix (AT|v7),

where AT = (a;,;) € R* is the transpose of A. Since ¢ < k, when AT is row-reduced it will have free
variables, which implies that the linear system has an infinite number of solutions. This contradiction yields
that k < £.

If £ < ¢, then by writing 5 = Zj cmﬂﬂj and using the above argument one gets that k¥ > ¢. Hence,
k=2 O

Definition 2.24. The dimension of a vector space V, dim(V'), is the number of basis vectors.

Example. (a) Since the standard basis for R” has n vectors, dim(R") = n.
(b) Since a basis for &7, is (1,x,...,2™), one has that dim(Z%,) =n + 1.
(c¢) Recall that the subspace
S={A¢ R2%2 . ai1 +2az2 =0, a1,2 —3az1 = 0}.

(v

has a basis

This implies that dim(S) = 2.
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Corollary 2.25. No linearly independent set can have more vectors than dim (V).

Proof: Suppose that S = {Z,...,Z,} is a linearly independent set with n > dim(V). Since S C V one
has that [S] C V. Furthermore, since the set is linearly independent, dim([S]) = n. This implies that
dim (V') > n, which is a contradiction. O

Corollary 2.26. Any linearly independent set S can be expanded to make a basis.

Proof: Suppose that dim(V') = n, and that dim([S]) = k < n. There then exist n — k linearly independent
vectors 07, ..., Un—k such that ¥; ¢ [S]. The set S’ = SU{¥1,...,U,—k} is a linearly independent set with
dim([S’]) = n. As a consequence, S’ is a basis for V. O

Corollary 2.27. If dim(V) = n, then a set of n vectors S = {1, ...,Z,} is linearly independent if and
only if V.= [95].

Proof: Suppose that V' = [S]. If the vectors are not linearly independent, then (upon a possible reordering)
there is an ¢ < n such that for S’ = {#1,...,Z¢} one has [S] = [S'] with the vectors in S’ being linearly
independent. This implies that V' = [S’], and that dim(V) = £ < n.

Now suppose that the vectors are linearly independent. If [S] C V, then there is at least one vector ¢
such that S U {¥} is linearly independent with [S U {¢}] = V. This implies that dim(V) > n + 1. O

Remark 2.28. Put another way, the above corollary states that if dim(V') = n and the set S = {Z1,...,Z,}
is linearly independent, then S is a spanning set for V.

2.3.3.  Vector Spaces and Linear Systems

Definition 2.29. The null space of a matrix A, denoted by N(A), is the set of all solutions to the
homogeneous system for which A is the coefficient matrix.

Example. Consider

1 2 3 1 0 -1
A=| 4 5 6 — |1 0 1 2
7 8 9 0 0 0
A basis for N'(A) is given by
1
(| -2 )
1

Definition 2.30. The row space of a matrix A, denoted by Rowspace(A), is the span of the set of the
rows of A. The row rank is the dimension of the row space.
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Example. If
1 0 -1
A=|lo01 2|,
00 0

then Rowspace(A) = [{(1 0 —1),(0 1 2)}], and the row rank is 2.

Lemma 2.31. The nonzero rows of an echelon form matrix make up a linearly independent set.

Proof: We have already seen that in an echelon form matrix no nonzero row is a linear combination of the
other rows. O

Corollary 2.32. Suppose that a matrix A has been put in echelon form. The nonzero rows of the
echelon form matrix are a basis for Rowspace(A).

Proof: If A — B, where B is in echelon form, then it is known that each row of A is a linear combination
of the rows of B. The converse is also true; hence, Rowspace(A) = Rowspace(B). Since the rows of B are
linearly independent, they form a basis for Rowspace(B), and hence Rowspace(A). O

Definition 2.33. The column space of a matrix A, denoted by R(A), is the span of the set of the
columns of A. The column rank is the dimension of the column space.

Remark 2.34. A basis for R(A) is found by determining Rowspace(A”), and the column rank of A is the
dimension of Rowspace(AT).

Example. Consider

11 2 1 0 -2 1 1 1 1 0 -1
A=1 3 10| —|01 4], AT=(1 3 5 — | 01 2
1 5 18 00 O 2 10 18 00 O
A basis for Rowspace(4) is (1 0 —1),(0 1 4)), and a basis for R(A) is
1 0
(0 o1 rp
-1 2
Theorem 2.35. The row rank and column rank of a matrix are equal.
Proof: First, let us note that row operations do not change the column rank of a matrix. If A = (@ ... @,) €

R™*™ where each column @; € R™, then finding the set of homogeneous solutions for the linear system with

coefficient matrix A is equivalent to solving
Cldl + -+ C"dn =0.

Row operations leave unchanged the the set of solutions (cy, ..., ¢,); hence, the linear independence of the
vectors is unchanged, and the dependence of one vector on the others remains unchanged.

Now bring the matrix to reduced echelon form, so that each column with a leading entry is one of the
€;’s from the standard basis. The row rank is equal to the number of rows with leading entries. The column
rank of the reduced matrix is equal to that of the original matrix. It is clear that the column rank of the
reduced matrix is also equal to the number of leading entries. O
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Definition 2.36. The rank of a matrix A, denoted by rank(A), is its row rank.

Remark 2.37. Note that the above statements imply that rank(A) = rank(A7T).

Theorem 2.38. If A € R™*", then rank(A) + dim(N(A)) = n.

Proof: Put the matrix A in reduced echelon form. One has that rank(A) is the number of leading entries,
and that dim(N(A)) is the number of free variables. It is clear that these numbers sum to n. O

2.3.4. Combining Subspaces

Definition 2.39. If Wy, ..., W} are subspaces of V, then their sum is given by

Wi+ + Wy =[WiU---UW,].

Let a basis for W} be given by (i j,..., W) ). If ¥ € Wi+ --- 4+ Wy, then this implies there are
constants ¢; ; such that
(k)

£(1)
U= g CiaWi1 + -+ g Ci kWi k-
i=1 i=1

Note that >, ¢; ju; ; € W;. For example, when considering 9?3 suppose that a basis for Wy is (1,1 + 2?),
and that a basis for Wy is (x, 1+ z,23). If p € Wi + Wy, then

p(x) =c1 +ca(1+ 172) +diz+day(14+2)+ d3x3,
Q: How does the dimension of each W; relate to the dimension of Wi + - - -+ W7 In the above example,

dim(W1) = 2,dim(Ws) = 3, but dim(&?3) = dim(W; + Ws) = 4. Thus, for this example dim(W; + Wy) #

Definition 2.40. A collection of subspaces {W7,..., Wi} is independent if for each i = 1,...,k,

Wi N (U Wj) = {0}

Example. Suppose that

1 0 1 0
Wi=1[{ 0 |], Wa=[| 1 |], Ws=[[ 1 |,] O |]]
0 0 0 1

It is clear that W; N W; = {6} for i # j. However, the subspaces are not independent, as

1
Wsn(Wruwa) =1[[ 1 ]I
0
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Definition 2.41. A vector space V' is the direct sum of the subspaces Wy, ..., Wy if
(a) the subspaces are independent
(b) V=Wi+- -+ W

In this case we write V=W; & --- & W.

— —

Example. (a) R" = [61] & &3] & - & [¢)]

(b) Zn=[]@ o & "

Lemma 2.42. If V. =W; & --- ® Wy, then

dim(V) = Z dim ().

Example. In a previous example we had that R? = W, + W, 4+ W3, with
Thus, the sum cannot be direct.

Proof: First show that the result is true for k¥ = 2, and then use induction to prove the general result.
Let a basis for W; be given by <51,...,5k>, and a basis for Wy be given by <5'1,...,(§g>. This yields
that dim(W;) = k and dim(W,) = £. Since Wy N W, = {0}, the set {31,..., 5Bk, 61,...,0¢} is linearly
independent, and forms a basis for [W; U Wa]. Since V' = [W; U Wa), this then yields that a basis for V is
(B1y. .y Bry01,...,00); thus,

dim(V) = k + £ = dim(W7) + dim(Ws).

Definition 2.43. If V = W7 & W5, then the subspaces W; and W5 are said to be complements.

Definition 2.44. For vectors i, 7 € R", define the dot product (or inner product) to be

n
U-U= E U;V;.
i=1

The dot product has the properties that
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Definition 2.45. If U C R"™ is a subspace, define the orthocomplement of U to be

Ut ={FecR": ¥-i=0foraldecU}.

Proposition 2.46. U™’ is a subspace.

Proof: Let v, € U*. Since
(aV+ b)) - d=aV-U+bw-4=0

for any @ € U, this implies that av’ + b € U+. Hence U~ is a subspace. O
Example. If U = [¢1] C R?, then Ut = [&,], and if U = [€}, é2] C R3, then U+ = [&3].
Remark 2.47. If A= (d; ... @,) € R™*", recall that

Theorem 2.48. If A € R™*" then N'(AT) = R(A)*.

Proof: Suppose that ¥ € N(AT), so that Z-a@; = 0 for i = 1,...,n. As a consequence, - (3, ¢;d;) = 0,
so that # € R(A)L. Hence, N(AT) C R(A)*. Similarly, if ¥ € R(A)*, one gets that 5 € N(AT), so that
R(A)*T c N(AT). O

Remark 2.49. Alternatively, one has that N'(A) = R(AT)*L.

Theorem 2.50. If U C R” is a subspace, then R* = U @& U=,

Proof: Let a basis for U be given by (ﬁl,...,§k>, and set A = (51 Ek) € R*"**. By construc-
tion, rank(A4) = k (and rank(A”) = k). By the previous theorem, we have that U+ = N(AT). Since
dim(N(AT)) + rank(AT) = n, we get that dim(U+) = n — k.

We must now show that U N U+ = {6} Let 6 € U N U+, which implies that §= > CZ@ By using the
linearity of the inner product

5-0=> c(fi-8) =0,
i=1
so that & = 0. O
Remark 2.51. A consequence of the above theorem is that (U+)+ = U.

Example. Suppose that a basis for U is (,5’1, e ,ﬂl). The above theorem shows us how to compute a basis
for U+. Simply construct the matrix A = (f; ... (), and then find a basis for N (A7) = U*. For example,
suppose that U = [d;, ds|, where

1 3
- 0 - -1
4 7
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Since

-2 —4

. 2 » -5
51 - 1 ) 62 0
0 1

-,

Corollary 2.52. Consider a linear system whose associated augmented matrix is (A|b). The system is

consistent if and only if b € N(AT)*.

Proof: If A= (&, ... d,), then the system is consistent if and only if b € R(A), i.e., b = 3., ¢;@. By the

above theorem R(A) = N(AT)+.

O

Example. As a consequence, the system is consistent if and only if b-b; = 0, where <51, . ,§k> is a basis for

N(AT). For example, suppose that A is as in the previous example. Then for b= (b;) € R%, the associated

linear system will be consistent if and only if 51 b= 0, 52 b =0. In other words, the components of the

vector b must satisfy the linear system

—2b1 — 2by + b3 =0
—4b; — 5by +b4=0

which implies that be s = [51, 52], where

S

I
=N o=
g = O

Note that S = R(A), so that a basis for R(A) is (by, by). Further note that this is consistent with the reduced

echelon form of AT.
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3. MAPS BETWEEN SPACES

3.1.  Isomorphisms

3.1.1. Definition and Examples

that f(¥h) # f(¥2). The map is onto if for each & € W there is a ¥ € V such that f(7)

Definition 3.1. Let V and W be vector spaces. A map f : V — W is one-to-one if ¥; # U5 implies
= 0.

Example. (a) The map f : &, — R"*! given by
ag
as
ag+a1x + -+ az" —
Qp

is one-to-one and onto.

(b) The map f : R?2*2 — R* given by

(25~

QLo o e

is one-to-one and onto.

Definition 3.2. The map f : V — W is an isomorphism if
(a) f is one-to-one and onto
(b) f is linear, i.e.,

o [(Uh +12) = f(0h) + f(2)

o f(rv) =rf(V) for any r € R

We write V = W, and say that V' is isomorphic to W.

Remark 3.3. If V =2 W, then we can think that V' and W are the ”same”.

Example. (a) In the above examples it is easy to see that the maps are linear. Hence, &n) = R™*! and

R2X2 o R4.

(b) In general, R™*" = R™™,

Definition 3.4. If f : V — V is an isomorphism, then we say that f is an automorphism.

Example. (a) The dilation map ds : R? — R? given by ds(¥) = s for some nonzero s € R is an automor-

phism.
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(b) The rotation map tg : R? — R? given by

to(#) = cos@ v, —sinf vy
O =\ sin@wvy + cos vy

is an automorphism.

Lemma 3.5. If f : V — W is linear, then f(0) = 0.

Proof: Since f is linear, f(0) = f(0-%) = 0- f(¥) = 0.

Lemma 3.6. The statement that f : V — W is linear is equivalent to

flerh + -4 cpty) = c1 f(U1) 4+ -+ + cn f(Un).

Proof: Proof by induction. By definition the statement holds for n = 1, so now suppose that it holds for
n = N. This yields
N N

FQ et +enning) = Q)+ flenmiin)

i=1 i=1

N
= D" () + flenatn).
i=1

Definition 3.7. Let U,V be vector spaces. The external direct sum, W = U x V, is defined by
W ={(u,0) : ueU, veV}

along with the operations

131+162:(171+ﬁ2,171+?72), r'u_)':(rﬂ'mv)

Lemma 3.8. The external direct sum W = U XV is a vector space. Furthermore, dim(W) = dim(U) +
dim(V).

Proof: 1t is easy to check that W is a vector space. Let S, = {ui,...,dr} be a basis for U, and let
Sv = {Uk+1,...,Ue} be a basis for V. Given a w = (4, ¥) € W, it is clear that one can write

=Y e,y divy);
i J

hence, a potential basis for W is
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We need to check that the vectors i, ..., @, are linearly independent. Writing >, ¢;; = 0 is equivalent to
the equations

k 4
E Ci’L_l:i = 0, E Ciﬁi =0.
i=1

i=k+1

Since Sy and Sy are bases, the only solution is ¢; = 0 for all <. O

Example. A basis for &y x R? is given by
and %5 x R? =2 R via the isomorphism

2 - -
(ap + a1z + asx”, 181 + c282) — | aq

3.1.2. Dimension Characterizes Isomorphism

Note that in all of the examples up to this point, if U = V, then it was true that dim(U) = dim(V'). The
question: does the dimension of two vector spaces say anything about whether or not they are isomorphic?

Lemma 3.9. If V2 W, then dim(V) = dim(W).

Proof: Let f : V — W be an isomorphism. Let (El, e ,5_;1> be a basis for V, and consider the set
Sw = {f(ﬁl), ceey f(ﬁn)} First, the set is linearly independent, as

n

0= f(F) = cilh)

i=1

implies that >, ciﬁi =0 (f is one-to-one), which further implies that ¢; = 0 for all 4. Since f is onto, for
each @ € W there is a ¥ € V such that f(¥) = @. Upon writing 7= )", dlﬂ_; and using the linearity of the
function f we get that

@ =Y dif(B).
=1

Hence, Sy is a basis, and we then have the result. O

Lemma 3.10. If dim(V) = dim(W), then the two spaces are isomorphic.

Proof: It will be enough to show that if dim(V) = n, then V = R"™. A similar result will yield W = R,
which would then yield V- =R" =W, ie, V=W.
Let B={01,...,0,) be a basis for V, and consider the map Repg : V — R™ given by

C1
Co n

Repp(@)= | . [, 7= e
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The map is clearly linear. The map is one-to-one, for if Repg (@) = Repg(¥) with @ =", i, U= > i3,
then ¢; = d; for all ¢, which implies that @ = ¥. Finally, the map is clearly onto. Hence, Repp is an
isomorphism, so that V = R"™. O

Theorem 3.11. V 2 W if and only if dim(V') = dim(W).

Corollary 3.12. If dim(V) = k, then V = R*.

Example (cont.). (a) Since dim(R™*™) = mn, R™*"™ = R™"

(b) Since dim(£2,) =n +1, £, =R

3.2.  Homomorphisms

3.2.1. Definition

Definition 3.13. If h : V — W is linear, then it is a homomorphism.

Example. (a) The projection map 7 : R® — R? given by

(| = = ()

is a homomorphism. However, it is not an isomorphism, as the map is not one-to-one, i.e., w(ré3) = 0
for any r € R.

(b) The derivative map d/dz : £, — &, given by

d
a(ao +arr+ -+ apz") = ay + 2a0x + -+ + napz" !

is a homomorphism. However, it is not an isomorphism, as the map is not one-to-one, i.e., d/dxz(ag) = 0
for any ag € R.

Definition 3.14. If h : V — V, then it is called a linear transformation.

Theorem 3.15. Let (4,...,0,) be a basis for V, and let {wy,...,%W,} C W be given. There exists a
unique homomorphism h : V' — W such that h(v;) = w; for j =1,...,n.

Proof: Set h : V — W to be the map given by

h(Cl’Jl + e + Cnﬁn) = Cl’Lf)l —|— e —|— Cnlfﬁn.
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The map is linear, for if @ = ), ¢;0;, o = Y, d;U;, then

h(’l‘ﬂzl + Tgﬁg) =h (Z(Tlci + ’I“Qdi)’l_fi)
= (ric; + radi)i;
= 7‘1h(ﬁ1) + 7"2]7,(122).
The map is unique, for if g : V' — W is a homomorphism such that ¢(7;) = &;, then

9(0) = 93 eiti) = 3 cig(t) = 3 eay = h(D);

hence, g(¥) = h(?) for all ¥ € V, so that they are the same map.

Example. (a) The rotation map tg; R?> — R? is an automorphism which satisfies

R cos 0 R —sin 6
to(€1) = < sin 6 >’ to(€2) = < cos 6 >

ﬁ cos 6 —sin 6
to(v) = 1 sin 0 T2 cos |-

(b) Suppose that a homomorphism h : &y — P53 satisfies

One then has

h(l) =z, h(z)= %zz, h(z?) = éx?’.

Then

1 1
h(ag + a1z + G,Q.’L'2) = qoz + 5(11302 + gagx?’.

The map is not an isomorphism, as it is not onto.

3.2.2. Rangespace and Nullspace

Definition 3.16. Let h : V — W be a homomorphism. The range space is given by
R(h):={h(0) : V€ V}.

The rank of h, rank(h), satisfies rank(h) = dim(R(h)).

Lemma 3.17. R(h) is a subspace.

Proof: Let wy,ws € R(h) be given. There then exists ¥, U such that h(v;) = w;. Since h(c1; + cots) €

R(h) and h(c171 4 co¥y) = c1Wy + cowWs, one has that ¢y + cows € R(h). Hence, it is a subspace.
Remark 3.18. (a) rank(h) < dim(W)

(b) h is onto if and only if rank(h) = dim (W)

O
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Example. If h : R?*2 — 25 is given by
h(A) = (a +b)x + ca® + da®, A= ( i Z ),

then a basis for R(h) is (z, 2%, 23), so that that rank(h) = 3.

Definition 3.19. The inverse map h~! : W — V is given by

W=V (@) == {7 : h(D) = @}

Lemma 3.20. Let h : V — W be a homomorphism, and let S C R(h) be a subspace. Then
hY(S) = {TeV : hv) €S}

is a subspace. In particular, hil((_)') is a subspace.

Definition 3.21. The null space (kernel) of the homomorphism h : V — W is given by

N(h):={7eV : hD) =0} =nr"*0)

The nullity of N'(h) is dim(N (h)).

Example. Again consider the map h : R?*2 — P53, It is clear that h(A) = 0 if and only if a +b = 0,c =
d = 0, so that a basis for N'(h) is given by
-1 1
(7o o )

Note that for this example, rank(h) + dim(N(h)) = 4.

Theorem 3.22. Let h : V — W be a homomorphism. Then

rank(h) + dim(N(h)) = dim(V).

Remark 3.23. Compare this result to that for matrices, where if A € R™*"  then
rank(A4) + dim(N(A)) = n.

Proof: Let By = (ﬁl, . ,ﬁk) be a basis for A/(h), and extend that to a basis By = (ﬁl, . ,gk761, )
for V, where k + ¢ = n. Set Bg = (h(¥1),...,h(¥;)). We need to show that Bg is a basis for R(h).

First consider 0 = 3, c;h(#;) = (Y, ¢i@i). Thus, 3, ¢;0; € N(h), so that 3, cith = 3, d;f3;. Since By
is a basis, this yields that ¢; = -+ =c¢p=d; =--- =di =0, so that By is a linearly independent set.

Now suppose that k() € R(h). Since /=), aif; + >, biT;, upon using the fact that h is linear we get
that
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Hence, By is a spanning set for R(h).
By is a basis for A'(h), and Bg is a basis for R(h). The result is now clear. O

Remark 3.24. (a) It is clear that rank(h) < dim(V), with equality if and only if dim(N'(h)) = 0.
(b) If dim(W) > dim(V'), then h cannot be onto, as rank(h) < dim(V') < dim(W).

Lemma 3.25. Let h : V — W be a homomorphism. dim(N'(h)) = 0 if and only if h is one-to-one.

Proof: If h is one-to-one, then the only solution to h(7) = 0 is 7 = 0. Hence, dim(N(h)) = 0.

Now suppose that dim(N'(h)) = 0. From the above lemma we have that if By = (¥1,...,7,) is a
basis for V, then Bg = (h(?1),...,h(¥,)) is a basis for R(h). Suppose that there is a @ € W such that
h(@1) = h(tz) = W. We have that @ = ), a;T;, U2 = >, b;U;, so that upon using the linearity of h,

Z a;h(v;) = Z bih(7;).

Since B is a basis, this implies that a; = b; for all 7, so that i = i>. Hence, h is one-to-one. O

Definition 3.26. A one-to-one homomorphism is nonsingular.

3.3.  Computing Linear Maps
3.3.1. Representing Linear Maps with Matrices

Recall that if B = (#4,...,%,) is a basis for V, then uniquely defined homomorphism h : V — W is
given by
h(v) = h(z civ) = Zcih(ﬁi)a

i.e., the homomorphism is determined by its action on the basis.

Definition 3.27. Let A = (dy dy -+ d@y,) € R™*™ and let ¢ € R™. The matrix-vector product is defined

by
A= cidi.
i

Remark 3.28. (a) Matrix multiplication is a homomorphism from R® — R™.

(b) A linear system can be written as AZ = b, where A is the coefficient matrix and & is the vector of
variables.

Example. Suppose that h : &, — R3, and that
B = <2,1—‘r4l‘>, D= <51,—2€2,€1+€3>

are the bases for these spaces. Suppose that
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It is easy to check that

0
Repp(h(2)) = | —1/2 |, Repp(h(l+4z))=| -1
1 0

Thus, if p=1c; -2+ c2 - (1 +42), i.e.,
c
RepB(p) = ( C; > )

and since h(p) = ¢1h(2) + c2h(1 4 4z), by using the fact that Repy, is linear one gets that Repp(h(p)) =
c1 Repp(h(2)) + ca Repp (h(1 + 4x)). If one defines the matrix

Repp p(h) := (Repp (h(2)) Repp (h(1 + 4))),

then one has that
RepD(h(P)) = RepB,D(h) RepB(P)-

For example, if

1
Reps(p) = (_y ) (= ple) = 8,
then
0 1 1
Repo(nto) = | -1/2 -1 | (3 )
1 0
0 1
= —172 | -2 -1
1 0
-2
— 32
1
so that
1 3 0 1
M) =-2( 0 | =5 =2 |+|0
0 0 1
-1
—| -5
1

Definition 3.29. Let h : V — W be a homomorphism. Suppose that B = (#,...,%,) is a basis for
V,and D = (i, ...,W,) is a basis for W. Set

h; == Repp(h(;)), j=1,...,n.

The matrix representation of h with respect to B, D is given by

Repp p(h) = (711 hy - fln) c R™*",

Lemma 3.30. Let h : V — W be a homomorphism. Then

Repp (h(7)) = RepB,D(h) Repp (7).
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Remark 3.31. As a consequence, all linear transformations can be thought of as a matrix multiplication.
Example. (a) Suppose that V = [e”,e3"], and that h : V — V is given by h(v) = [v(z)dz. Since

1
h(e®) = e”, h(e3m) = §e3m,

we have
1 0
RepB,B(h) = < 0 1/3 > .

(b) Suppose that a basis for V' is B = (01, U, 7U3), and that a basis for W is D = (W, W, wWs). Further
suppose that

h(U1) = Wy + 3wWa, h(th) = We — W3, h(Vs) = —w + 4.
We then have that
1 0 -1
Reppp(h)=|( 3 1 0
0 -1 4

Thus, if ¥ = 20, — U5 + ¥3, we have that

Repp (h(7)) = RePB,D(h) Repg () = bt )

so that h(¥) = W + bWa + 5Ws.

3.3.2.  Any Matrix Represents a Linear Map

Example. Suppose that h : &5 — R3 with bases B = (1,2, 22) and D = (€}, &, +¢3, €1 —€3), is represented
by the matrix

1 -1 0
H=10 11
2 -1 1

-,

In order to decide if b = & + 38 € R(h), it is equivalent to determine if Rep,(b) € R(H). Since

—2
Repp(b) = | 3 |,
3
and
1 -1 0] -2
(Hp)y— [ 0 1 1] 3
0 0 0| 4

we have that Repp,(b) ¢ R(H); hence, b ¢ R(h). Note that rank(H) = 2, so that h is neither one-to-one nor
onto.
Let us find a basis for R(h) and A(h). We have

1 0 1 1 0 2
H—|011]), HF — |0 1 1],
0 0 0 0 0 O
so that
1 0 -1
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-,

Using the fact that b € R(h) if and only if Repp,(b) € R(H), and 7 € N(h) if and only if Rep(7) € N (H),
then yields

3 1
RMR)=[ 0 |,| 1|, Nh=[-1-z+2.
—2 0

Theorem 3.32. Let A € R™*"™. The map h : R® — R™ defined by h(Z) := AZ is a homomorphism.

Proof: Set A= (d,dy ... dy), and recall that AT = ), z,;d;. Since

A(rZ + sy) = Z(T% + sy;)a; =r Z Til; + 8 Z yid; = rAT + sAg,

i=1 i=1 i=1

h is a homomorphism. O

Theorem 3.33. Let h : V — W be a homomorphism which is represented by the matrix H. Then
rank(h) = rank(H).

Proof: Let B = (¥1,...,7,) be a basis for V, and let W have a basis D, so that
H = (Repp(h(¥h)) ... Repp (h(¥y))).

The rank of H is the number of linearly independent columns of H, and the rank of A is the number of linearly
independent vectors in the set {h(¥1),...,h(¥,)}. Since Repp : W — R™ is an isomorphism, we have that a
set in R(h) is linearly independent if and only if the related set in R(Repp(h)) is linearly independent (prob-
lem 3.1.1.28), i.e., {h(¥}),...,h(¥))} is linearly independent if and only if {Repp(h(#1)),...,Repp(h(Tk))}
is linearly independent. The conclusion now follows. O

Corollary 3.34. (a) h is onto if and only if rank(h) = m
(b) h is one-to-one if and only if rank(h) =n

(c) h is nonsingular if and only if m = n and rank(h) =n

3.4.  Matrix Operations

3.4.1. Sums and Scalar Products

Definition 3.35. Let A = (a;;),B = (b; ;) € R™*™. Then
(a) A+ B = (aij+bi;)

(b) rA = (ra; ;) for any r € R.
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Lemma 3.36. Let g,h : V — W be homomorphisms represented with respect to the bases B and D
by the matrices G, H. The map g + h is represented by G + H, and the map rh is represented by rH.

3.4.2.  Matrix Multiplication

—

Definition 3.37. Let G € R™*" and H = (El ho - - hyp) € R"*P. Then

GH = (Ghy Ghy --- Gh,) € R™*P.

Example. 1t is easy to check that

1 1 0 5
2 -1 (_1§>: -3 1
3 -2 -5 0

Remark 3.38. Matrix multiplication is generally not commutative. For example:

(a) if A€ R?**3 and B € R3*?, then AB € R?**? while BA € R3*3
1 -1 5 2
=(2 %) #=(10)

1 -2 9 -5
AB_(lO 4)’ BA_<12 —4>'

(b) if

then

Lemma 3.39. Letg : V — W and h : W — U be homomorphisms represented by the matrices G, H.
The map hog : V — U is represented by the matrix HG.

Proof: Give the commutative diagram:

Vg —4— Wp —— Ug
RepBl Rele lRepE
R™ - R™ m RP

Example. Consider the maps tg,d, : R? — R? given by

. [ cosfv; —sinfuvy . 3un
to(v) := ( sin vy 4 cos 6 vy )’ dr (V) = ( Uy )

The matrix representations for these maps are

. ( cosf —sinf .
Ty '_< sin 6 cos @ )’ Dr '_(

O W
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Rotation followed by dilation is represented by the matrix

DTy — ( 3cosf —3sinf ),

sin @ cos

while dilation followed by rotation is represented by the matrix

T,D, — ( 3cosf —sinf )

3sinf cos 0

3.4.3. Mechanics of Matrix Multiplication

Definition 3.40. The identity matrix is given by I = (€1 & -+ €,) € R"*"™.

Remark 3.41. Assuming that the multiplication makes sense, I¥ = ¢ for any vector ¥ € R", and conse-
quently Al = A, IB = B.

Definition 3.42. A diagonal matrix D = (d; ;) € R"*" is such that d; ; = 0 for ¢ # j.

Definition 3.43. An clementary reduction matrix R € R™*" is formed by applying a single row oper-
ation to the identity matrix.

Example. Two examples are

I —2p1+p2 I PTee

[enl N
o = O
— o O
o = O
O O =
—_ o O

Lemma 3.44. Let R be an elementary reduction matrix. Then RH is equivalent to performing the
Gaussian operation on the matrix H.

Corollary 3.45. For any matrix H there are elementary reduction matrices Ry, ..., Ry such that
Ry Ry, --- R1H is in reduced echelon form.

3.4.4. Inverses

Definition 3.46. Suppose that A € R™*™. The matrix is invertible if there is a matrix A~! such that
AATL = A71A=1T.
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Remark 3.47. If it exists, the matrix A~ is given by the product of elementary reduction matrices. For

example,
A= 1 1 —QHPQ 1 1 —1/—3>p2 1 1 —Pz_—‘r)ﬁl I
L2 -1 0 -3 0 1 ’

10 1 0 1 -1
Rl:(-z 1)’ R2:<O —1/3>’ R3:<0 1)’

we have that RsRoR1 A =1, so that A~' = R3RyR;.

Thus, by setting

Lemma 3.48. A is invertible if and only if it is nonsingular, i.e., the linear map defined by h(Z) := AZ
is an isomorphism.

Proof: A can be row-reduced to I if and only if A is an isomorphism. O

Remark 3.49. When computing A~!, do the reduction (A|I) — (I|A~1) (if possible).
Example. (a) For A given above,
1 0]1/3 1/3
(Al) = ( 0 1]2/3 -1/3 >

(b) For a general A € R?*? we have that

a b\ ' 1 d —b
c d Tad—bec\ —¢ a )’

if ad — be # 0.

3.5.  Change of Basis
3.5.1. Changing Representations of Vectors
For the vector space V let one basis be given by B = <51, cee 5n>, and let another be given by D =

(51,...,§n>. Define the homomorphism A : V — V by h(ﬁj) = ﬁj, i.e., h = id, the identity map. The
transformation matrix H associated with the identity map satisfies fzj = Repp(f;).

Definition 3.50. The change of basis matrix H = Repp p(id) for the bases B, D is the representation
of the identity map with respect to these bases, and satisfies f_ij = Repp (,@;)

Example. Suppose that

We have that
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It can be checked that

v ()= (33 (1) (1)

so that the change of basis matrix is
- 2/3 1
i = < ~1/3 —1 )

Recall that H Repg (%) = Repp (). For the vector # = (—1,—3)T one has that Repg(¥) = (1,—2)7, so that
ﬂ ﬂ 1/ -4
Repp (V) = H Repp (V) = 3 5 )
What about the change of basis matrix from D to B? It must be H~! (use a commutative diagram to

show it).

Example (cont.). The change of basis matrix from D to B is

-1 3 3
= ( -1 -2 >
Note that this implies that
2 3 1 3

3.5.2. Changing Map Representations

Consider the homomorphism  : V' — W, and suppose that V" has bases B, B’l while W has bases D, D.
With respect to B, D there is a transformation matrix H, while with respect to B, D there is a transformation
matrix H, i.e.,

Vg L, Wp
H

o |

We have that

The idea is that, if possible, we wish to choose bases B, D such that h(5;) = a;d; for some a; € R.

I}eﬁnition 3.51. H, H € R™*™ are matrix equivalent if there are nonsingular matrices P, () such that
H=PHQ.

Lemma 3.52. Matrix equivalent matrices represent the same map with respect to appropriate pairs of
bases.
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Example. In the standard basis &, consider the homomorphism

h(f):<4 ‘f)f H:(‘ll ‘f)

1
Consider the basis . )
v )T
We have that
Repp )= (1 7 )
so that
H= RepDﬂz(id)_lHReprgz(id) = < (2) g ) ;

hence, the homomorphism has the desired property with the basis D, i.e.,
1 1 2 2
(1 p=2(1) (1 p=2(1)

Remark 3.53. The above example does not really change if, with respect to the standard basis B = (1, x),
= —2 4z, so that the matrix representing the

the homomorphism h : Py — PP satisfies h(1) =4+, h(x)
homomorphism is that given above. If we set D = (1 4+ 2,2 + z), then one then has that

h(l4+x)=2(14=z), h2+z)=302+2).

3.6. Projection

3.6.1. Orthogonal Projection into a Line

Let the line £ be given by ¢ := [s], and let ¥ € R™ be a given vector. The orthogonal projection of ¥ onto

¢ is given by Uz = c¢5, where cz is chosen so that

172(17—6175&)%-0175’, (17—0;55’)'520

(give a picture). Note that the second condition implies that 7 — cz5 € £+. The second condition yields that

<
0y

Cp =

W)
w]

Definition 3.54. The orthogonal projection of ¢ onto the line spanned by § is the vector

1

W]

projiz(v) = S.

-5

R

Remark 3.55. (a) By construction, ¥ — projz(v) € [3]
ince projrz : R™ — R” is a homomorphism, it is represented by a matrix Pz, which is given by
b) Si g (R" > R"isah hism, it i db ix Py, which is given b

1 -
Pz = ?(313,323, ey 808)
— S1 Sn_
G )

Note that rank(P[z) = 1, and hence dim(N (P[5)) = n — 1. Further note that [5]* = N (Pg).
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Example. Suppose that

1 1
v=|( 11, §= 2
4 -1
Then
R 1,
projz (V) = —5%
3.6.2. Gram-Schmidt Orthogonalization
Definition 3.56. The vectors 7, ...,7; € R" are mutually orthogonal if @ - ¥; = 0 for any ¢ # j.
Theorem 3.57. Suppose that the nonzero vectors v1,...,U; € R™ are mutually orthogonal. The set
{¥1,...,Ux} is then linearly independent.

Proof: Suppose that ), ¢;0; = 0. For each j take the dot product with ¥, so that

17]‘ 62 ’Uj . (chﬁb) = Zci(ﬁj ﬁl) = Cj’Uj . 17]'.
%

%

Since the vectors are nonzero, this implies that ¢; = 0. Hence, the vectors are linearly independent. O

Corollary 3.58. The set {U1,...,TU} is a basis.

Definition 3.59. The basis given above is an orthogonal basis.

Recall that if 7 € R", then ||7]|?> = 7 - 7.

Lemma 3.60. Suppose that B = (R1,...,Ry) is an orthogonal basis for the subspace S C R™ . If
U=, cik; €S, then

&l

T g

(a) c; =

J =y
=

7

14
(b) |81% = iR - R
i=1

Proof: Follows immediately from the fact that B is an orthogonal basis. For part (a) consider v - K;, and
for part (b) simply look at ¥ - ¥. O
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Lemma 3.61. Let (R1,...,R¢) be an orthogonal basis for a subspace S. For a given ¥ set

—

=

%

PZE Cikiy, C = ——= -
- Ki* Kj
K2

Then §— v € S*.

Proof: First note that

— —

Rj-(P—0)=F;-P—R

=7 ()
%
= (ZCZ‘E]"EZ‘)—C]‘E]"E]‘

K2

o)

e
Cl'l{i) — Cj:‘{j . K)j

= CGjkjhj = CGikj Ky

=0,

so that p'— ¥ is orthogonal to each ;. If # € S, so that ¥ = ), d;<;, by using the linearity of the dot product
it is clear that (p — @) - ¥ = 0. Hence, p— 7 € S*. O

Definition 3.62. Define the homomorphism projg : R® — R" by

projg(v) = Z Projiz,] (V).

%

Remark 3.63. From the above one has that ¥ — projg(%) € S*. The matrix representation for projg, Pg,
is given by
Ps =Y P,
i

Since (K1, ..., <¢) is an orthogonal basis, one has that rank(Pg) = ¢, and hence that dim(S*) = dim(N(Pg)) =
n—/.

Recall that if S = [517 . ,EkL then a basis for S is not at all unique. The question is how to find an
orthogonal basis for S. For example, suppose that

1 1 5
s=[l1|.l2].]6]
1 3 7
Keep in mind that dim(S) < 3. Set
1
Fi=11
1
Define Ky by
1 1 -1
Ro=| 2 | —projiz, (| 2 |)= 0
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If S = [R1, K2, now define

5 5
6 —projg(| 6 |)
7 7
5 5 5
6 | —projjz, (| 6 |)—projg,(| 6 |)
7 7 7
=0.
An orthogonal basis for S is then
1 —1
(1], 0 ),
1 1

so that dim(S) = 2.

Theorem 3.64 (Gram-Schmidt orthogonalization). Suppose that S = [517 e ,Ek]. An orthogonal basis
for S is constructed via

K1 =
Ker1 = Bey1 — projg, (Bes1),

where Sy = [R1,..., K.

Remark 3.65. The procedure can alternatively be written as

LS

)
) — Projz,] (B3)

= f> — projjz,; (B2
Ry = [ — projz (ﬁ

—

R = O — proj[gl](ﬁk) — = projiz, _,1(Bk)-

Proof: The argument will be by induction. It is clear that [7,] = [#;]. Define Sy = [%),...,R]. Suppose
that for some 1 < ¢ < k that Sy = [31,..., 0. Set

pe = projg, (Be+1) = projiz,(Be+1) + - + projz (ﬂ/+1)
It is clear that py € S;. By supposition, Kp11 = @H —pE [ﬁl, - ,Bg+1]. Since p € Sy, it is clear that
Bey1 =D+ Reg1 € Seq1. Thus, Ser1 =[5, -+, Bes1]. From the above lemma Rpyq = Bop1 — P € Szl, so that
the basis for Sy11 is orthogonal. It then follows that an orthogonal basis for S is given by (&1,...,Rg). O

3.6.3. Projection into a Subspace

Let a basis (not necessarily orthogonal) for a subspace M be given by (07,...,0). Given a be R™, one
could compute proj M(I;) by first using the Gram-Schmidt procedure to get an orthogonal basis for M, and
then using the prOJectlon formula. However, that is a lengthy process. Let us try another approach. Set
A= (6,0, - T) € R Since proj,,(b) € M, by definition prow( b) € R(A), i.e., there is an Z* such
that AZ* = prOJM( b). Recall that the projection also satisfies b — proj,; (b) = b — AZ* € R(A)+ = N(AT).
Thus, AT (b — AZ*) = 0, so that the vector #* is given as the solution to AT AZ = ATb.
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Is the vector * unique? We must show that given rank(A4) = ¢, then dim(N (AT A)) = 0. If ¥ € N'(A), it
is clear that & € N(AT A); hence, N'(A) C N (AT A). Now suppose that & € N(AT A). This clearly implies
that A7 € N(AT). It is equally clear that AZ € R(A). Since R(A)*+ = N (AT), this necessarily implies that
AZ =0, i.e., & € N(A). Hence, N(ATA) C N(A), so that N (A) = N (AT A). Since rank(A) = ¢ implies
that dim(N'(A)) = 0, one then gets that dim(N' (AT A)) = 0. Thus, #* is unique.

Lemma 3.66. For a given A € R"*¢ with rank(A) = ¢, and for a given be R™, the projection of b onto
R(A) is given by AZ*, where ¥* is the unique solution to the system AT AT = ATb.

Definition 3.67. The least-squares solution of AT = b is the solution to AT A7 = ATb.

Remark 3.68. (a) By construction, the least-squares solution satisfies || AZ* —b|| < || AZ—b|| for any & # Z*.

(b) If b € R(A), then the least-squares solution is the true solution.

Topic: Line of Best Fit

Suppose that you have a collection of point (z1,y1), ..., (Zn,yn) that you wish to fit with a curve of the
form
y=cofo(z) +cfi(z) + - +cpfelz).
If the points were to lie exactly on the proposed curve, then the following system of equations would be
satisfied:
y; = cofolzj) +afi(zy) + - +enfulzy), j=1,....n,
ie.,
fo(z1) -+ fr(z1)
Ac=7q, A= : :
fo(xn) -+ fr(xn)
It is highly unlikely, however, that the points will lie exactly on the proposed curve. The curve of best fit
would be given by choosing the vector & so that ||A¢— ]| is as small as possible. The vector ¢ is the solution
to the least-squares problem AT A¢ = ATy
For the first example, suppose that you wish to fit the data (1,0),(2,1), (4,2),(5,3) with a line. One
then gets that

A=

— = =
U N =
<y
Il
W = O

The least-squares solution is &= (—3/5,7/10)7, so that the line of best fit is

3 . 7
=——+4 —x.
YTT5 10
Now consider the following example. Among the important inputs in weather forecasting models are
data sets consisting of temperature values at various parts of the atmosphere. These are either measured
directly using weather balloons or inferred from remote soundings taken by weather satellites. A typical set

of RAOB (weather balloon) data is given below:

p| 1] 2| 3| 4| 5| 6| 7] 8] 9] 10
T | 222|227 | 223 | 233 | 244 | 253 | 260 | 266 | 270 | 266
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The temperature T in kelvins may be considered as a function of p, the atmospheric pressure measured in
decibars. Pressures in the range from 1 to 3 decibars correspond to the top of the atmosphere, and those in
the range from 9 to 10 correspond to the lower part of the atmosphere. The linear and cubic least-squares
fits are given below.

T 28017

270
260
250
2401
2301

220

2109 2 2 6 [ 10

Figure 1: Comparison of a linear fit with a cubic fit for the temperature vs. pressure data.
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4. DETERMINANTS

4.1. Definition

4.1.1. Exploration

A—(‘C‘ Z)

It is known that A is nonsingular if and only if ad — bc # 0.

Consider the matrix A € R?*?2 given by

Definition 4.1. If A € R?%2, define the determinant of A to be

det(A) = ad — be.

Remark 4.2. Often one writes |A| := det(A).

The following properties are easy to verify:
(a) det(AT) = det(A)
(b) det(AB) = det(A) det(B).

Recall that Gaussian elimination is equivalent to multiplication by one or more elementary reduction
matrices. Using this fact and the above properties yields the further properties:

(a) if

then det(A) = — det(A)
(b) if

then det(A) = rdet(A)
(c) if

then det(A) = det(A)

4.1.2. Properties of Determinants

Let
A= (ﬁhﬁQa s 75’%) € Ran’

where p); represents row j of A.
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Definition 4.3. A determinant is a function det : R®»*"™ — R such that
1a"'771p_’i+ﬁja"'aﬁn):det(ﬁl7"'7ﬁja"'7ﬁn) fOI‘Z;é']
1a"'7ﬁi7"'aﬁj7"'7ﬁn):_det(ﬁlv"'aﬁj7"'7ﬁia'"aﬁn) fOI"L;éj

1a"'77ﬁp_’i7"'7ﬁn) :Tdet(ﬁl,...,ﬁi,...,ﬁn)

Lemma 4.4. The determinant satisfies the following properties:
(a) if A has two identical rows, then det(4) =0

(b) if A has a zero row, then det(A) =0

(c) A is nonsingular if and only if det(A) # 0

(d) if A is in echelon form, then det(A) is the product of the diagonal entries.

Proof: First suppose that A has two equal rows. Using property (b) yields that det(A4) = —det(A), so that
det(A) = 0.
Now suppose that A has a zero row. Using property (a) gives

det(...,f...,0,...)=det(..., 7 ....pi +0,...).

The matrix on the right has two identical rows, so the above result gives that det(A) = 0.
Let A be the Gauss-Jordan reduction of A. As an application of the first three properties one has that
det(A) = adet(A), where « is some nonzero constant. If A is nonsingular, A = I, so that by property (d)

det(A) = 1, and hence det(A) = a # 0. If A is singular, then A has at least one zero row, so by the above
result det(A) = 0, and hence det(A) = 0.

Finally, suppose that A is in echelon form. If one of the diagonal entries is zero, then in reduced echelon
form the matrix will have a zero row, and hence det(A) = 0. This is exactly the product of the diagonal
entries. Suppose that none of the diagonal entries is zero, i.e., a; ; # 0 for ¢ = 1,...,n. Upon using property
(c) and factoring a;,; from row 4 one has that

det(A) =0a1,1G22 - Qpn det(A),

where A is such that a;; = 1fori=1,...,n. The matrix A can clearly be row-reduced to I; furthermore,

this reduction only requires property (a), so that det(A) = det(/) = 1. This yields the desired result. O

Example. The above result gives us an indication as to how to calculate det(A) if n > 3. Simply row-reduce
A to echelon form keeping track of the row-swapping and row multiplication, and then use result (d) from
the above. For example,

12 32| | 24 3 1o -2
34 -2 |==|-3 4 —2|=—2|_-3 4 2
10 —2| 2] 10 -2 21 94 3
1o -2 1o -2

— 2|0 4 —8|=-—2|0 4 —8|=-30
2l 4 7 210 0 15
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Lemma 4.5. The determinant has the following properties:
(a) det(AT) = det(A)
(b) det(AB) = det(A) det(B)

(c) if A is nonsingular, then det(A~') = det(A4)~!.

4.3.  Other Formulas

4.3.1. Laplace's Expansion

Definition 4.6. For a given A € R™" let A;; € R®=UX(=1) he the matrix formed by deleting
row ¢ and column j from A. The matrix A;; is the 7,7 minor of A. The ,j cofactor is given by
(—1)i+j det(AZ-,j).

Example. If

then

4 6 1 2
A1,2=<7 9>7 A2,3=(7 8)

Theorem 4.7 (Laplace Expansion of Determinants). If A € R"*™ then

det(A) = 2:(71)1'“‘3%7;f det(A; ) (across row i)
k=1

= Z(—l)kﬂak,j det(Ag ;) (down column j).

k=1
Example. One has that
1 0 =5
2 1 3 (-1)2.0 23 + (=121 L =5 4+ (=1)3t2.0- L5
230 6 -3 6 -3 6 2 3

Topic: Cramer's Rule

Consider the linear system AZ = l_;, where A € R™*"™ is such that det(A) # 0. Since A is nonsingular, the
solution is given by # = A~'b. Let B; € R™*" be the matrix formed by substituting b into column j of A.
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Theorem 4.8 (Cramer’s Rule). The solution vector T is given by

mj = .
det(A)
Example. If
2 1 1 . 1
A=13 0 1|, b= 4
1 -1 -1 2
then for the system AZ = b one has that
2 11
Bs=|3 0 4
1 -1 2
Hence,
_det(B;) 3
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5.  SIMILARITY

5.2.  Similarity
5.2.1. Definition and Examples

Example. Consider the following table:

Married | Single
0.85 0.10 Married
0.15 0.90 Single

Set &; = (m;, sj)T, where m; represents the number of married men in year j , and s; is the number of

single men in year j. The above table gives the percentage of married men who will stay married, etc. If
. ( 0.85 0.10 )
0.15 0.90 /’
we have the relationship Z, 11 = AZ,. This is a dynamical system. Since
T = ATy, To= AT, = A%%,,... &, = AT,_ = A",

if we wish to understand the final distribution of married men vs. single men, we need to understand
lim,, .., A™. How do we accomplish this task without actually doing the multiplication?

Recall that two matrices H and H are equivalent if H = PHQ. From the commutative diagram

Ve — s Wp
H

o |

Vg —— W

we have that
H =Repp, (id) - H - Rep p(id)
= Repp, p(id) - H - Repy p(id) "

If we restrict ourselves to the following situation,

Vs LVB
H

ol [

VD —’f> VD
H

we have that A
H =Repp p(id) - H - Repg p(id) "

Definition 5.1. The matrices T and S are similar if there is a nonsingular matrix P such that T =
PSP,

Remark 5.2. (a) The above can be rewritten as TP = PS, which, as we will see, allows us to choose the
optimal P.
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(b) Two matrices are also similar if QTQ~' =S, as Q = P~ 1.

Example. Consider the matrices

It is easy to check that

Proposition 5.3. Suppose that T = PSP~!. Then det(T) = det(9).

Proof: Recall that det(AB) = det(A) det(B), and that det(A~1) = det(A)~!. Using these properties

det(T) = det(P) det(S) det(P~!) = det(S) det(P)

1
et (P) = det(9). O

Proposition 5.4. Suppose that T = PSP~!, and further suppose that S is nonsingular. Then T is
nonsingular.

Proof: From the above det(T) = det(S). If S is nonsingular, then det(T) = det(S) # 0, so that T is
nonsingular. O

Proposition 5.5. If T is similar to S, i.e., T = PSP~'. Then T* is similar to S* for any k > 1.
Furthermore, T = PS*P~1.

Proof: Homework problem. O

5.2.2. Diagonalizability

Definition 5.6. A homomorphism h : V — V is diagonalizable if there is a basis <31, e 75_;1) for V
such that h(5;) = NG for i = 1,...,n. A diagonalizable matrix is one that is similar to a diagonal
matrix.

Example. We have already seen that the following are similar;
4 -2 2
() e (0s)

Remark 5.7. Not every matrix is diagonalizable. If D = diag(Ay,...,\,) is a diagonal matrix, then it is
easy to check that D*¥ = diag(\},..., \k) for each k > 1. If A is similar to D, then we know that A is

similar to D*. Counsider
(01 2 (0 0
A_(O 0>:>A_(0 0)_

w o

Hence, A is diagonalizable.
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A clearly cannot be similar to the zero matrix, for this would imply that A = 0. Since det(A) = 0, det(D) = 0,
so that we can assume that D = diag(X,0). If

a b
p-(%4)
is invertible, it is easy to check that

A2 ad —ab
PD?*P = —— :
det(P) ( cd —bc )

In order to get the zero matrix, we need ad = be = 0, which would require that det(P) = 0. Hence, no such
P exists, so that A is not diagonalizable.

5.2.3. Eigenvalues and Eigenvectors

Definition 5.8. A homomorphism h : V — V has a scalar eigenvalue A € C if there is a nonzero
eigenvector ¢ € V such that h(¢) = AC.

Example. Consider the homomorphism h : &; — &7 given by

h(co + c1x) = (4o — 2¢1) + (¢o + ¢1)z.
We wish to solve A(p(z)) = Ap(z). With respect to the standard basis this can be rewritten as HC = A,
where

4 =2 s
H= Repgz,gz(h) = ( 1 1 > ) CZ Repg2(p)

The system can again be rewritten as (H — AI)fz 0. In other words, we need EE N(H — XI). In order for
dim(N(H — AI)) > 1, we need det(H — A\I) = 0. Thus, to find the eigenvalues we must solve

det(H — M) =X —5X+6= (A —2)(A—3) = 0.

For A = 2 one has 5: (1,1)7, and for A = 3 one has E: (2,1)T. Thus, the eigenvalues for h are A\ = 2,3,
and the associated eigenvectors are p(z) =1+ z,2 + x.
If B={(1+4+x,2+ z), then

2 0
H:RepB,B(h) = ( 0 3 >7

ie, hci(1+2)+c2(2+2)) =2¢1 (1 + 2) + 3c2(2 + ).

Definition 5.9. If H € R™ "™ then H has an eigenvalue A with associated nonzero eigenvector 5 if
H¢ =X

Definition 5.10. The cigenspace of the homomorphism h associated with the eigenvalue \ is

Vi i={C : h({) = AL}
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Lemma 5.11. The eigenspace V) is a subspace.

Proof: Just check that h(clé —1—0252) = )\(0151 + (), so that (i, (o € Vy implies that ¢1C +coCa € V. O

Definition 5.12. The characteristic polynomial of H € R™*™ is given by
p(z) = det(H — «I).

The characteristic equation is p(z) = 0. The characteristic polynomial of a homomorphism h is the
characteristic polynomial of any Repp 5(h).

Remark 5.13. p(x) is a polynomial of degree n. As a consequence, there will be n eigenvalues (counting
multiplicity).

Lemma 5.14. The characteristic polynomial of h is independent of the basis B.

Proof: If Hg and Hp are representations of h with respect to the bases B and D, there is a nonsingular P
such that Hg = PHpP~!. Noting that

PHpP ' —xI = P(Hp —2I)P~!
yields that

det(Hp — zI) = det(PHp P~ — 1) = det(P) det(Hp — «I) det(P~1) = det(Hp — =I). O

Lemma 5.15. Let H € R™ "™ be given, and let Ay,...,\; be distinct eigenvalues. If C_; € Vy, for
j=1,...,¢, then the set {51, cee 5@} is linearly independent.

Proof: Proof by induction. The statement is clearly true if £ = 1. Assume that it is true for some value
1 < k < £, so that the set {¢1,...,(x} is linearly independent. Now consider

1€+ - + G + Cry1Grar = 0.
Multiplying both sides by A1 yields
1 Mer1C1+ -+ Mk 1+ G 1 Ak 1Crgr = 0,
and multiplying both sides by H and using the fact that H §_; = )\jg:;' yields
M€+ -+ el + Crp1 Mg 1Grar = 0.
Subtracting the first from the second gives
et = Mep1)G 4 - 4 Mk — Aegr) e = 0.

Since the eigenvalues are distinct, this implies that ¢; = --- = ¢ = 0. Since 5]€+1 £ 0, this further implies
that cx+1 = 0. Hence, the set {(3,...,k,Ck+1} is linearly independent. O
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Corollary 5.16. Let H € R™*"™ be given, and let A1, ..., A\, be distinct eigenvalues. The set {51, ey C:L}
is a basis.

Corollary 5.17. Suppose that H € R"*™ has n distinct eigenvalues. H is diagonalizable.

Proof: Suppose that HC_; = )\jc_;- for j = 1,...,n. As a consequence of the above lemma, the matrix
pP= (51, 52, cee fn) is nonsingular. Setting D = diag(A1,...,\y), it is easy to check that HP = PD; hence,
P-'HP=D. O

Remark 5.18. (a) The statement can be relaxed to say that if there are n linearly independent eigenvectors,
then H is diagonalizable.

(b) The matrix P depends on the ordering of the eigenvalues.

(1 71)

Example. Suppose that

If

— =
— DN
~__

then D = diag(2, 3), while if

~
I
N
— N
— =
N——

then D = diag(3,2)

Topic: Stable Populations

Consider the example at the beginning of this chapter. Setting

=(3) a=(%)

we have that with the basis B = <51,52> the homomorphism h(Z) = AZ is represented by the matrix
D = diag(1,3/4). Thus, with the basis B we have that dynamical system becomes ¥,+1 = D%, where
7 = Repg(F). If G = (a,b)?, the solution is

Gn=o G- (3) b

so that as n — oo we have that i, — (a,0)”. For example, suppose that &y = (14,36)7 = 1051 + 6527 SO
that ¢ = (10,6)7. We have that lim,, o %, = (10, 0), so that lim,, ., &, = 10(; = (20,30)T.

Remark 5.19. The fact that A = 1 is an eigenvalue is not a coincidence. Problems 5.2.3.33 and 5.2.3.42
discuss this issue in more detail.
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Topic: Method of Powers

For many applications it is important to find only the largest eigenvalue of the matrix H € R"*"™.
Why? As in the previous example, consider dynamical system Z, 11 = HZ,. Suppose that H has n distinct
eigenvalues Aq1,..., A, with associated eigenvectors 51, .. ,5,, Since <51, .. ,5n> is a basis, we can write
vy, cié. Using linearity we see that

HQ’U: ch)\gé
%

H'S =" e\

If one of the eigenvalues, say A, is such that |[A\g| < |A1] for & = 2,...,n, then as ¢ becomes large the
dominant behavior will be H*%' ~ c; \{(;. Note that

(SN VA N
=G+ ) |+ G
N 161 ; <A1> G

so that
HYY

lim —— = ¢1().
Jim Sy =G

How do we determine the eigenvalue \;? If n is large, then the most efficient way to accomplish this
task is not by finding all of the roots of the characteristic equation. Given a ¥, consider the algorithm for
ji=0,1,...,

—»

'U_jj || || Uj+1 = HIBJ
Note that ||w;|| =1 for all j. If @, is an eigenvector, then we will have that ¥;41 = Aw; for the associated
eigenvalue A, so that |\| = ||Uj41]|/]|W;]] = ||¥j+1]]. From the above discussion we expect that as j gets large

we will have that |A\{| = ||Tj41]|. A stopping criterion could then be

[l = 117
1551

H‘ e, O<exl.

Remark 5.20. If |\3/\1] is sufficiently small, where Ay is the second largest eigenvalue in absolute value,
then this algorithm will converge fairly quickly. Otherwise, there are other techniques that one could use.

Topic: Symmetric Matrices

The equations of motion for a coupled mass-spring system can be written in the form
M7 = KZ,

where M = diag(my,...,m,) and K = KT, ie., K is a symmetric matrix. Here m; > 0 represents the
mass on the end of spring i, &; is the distance of mass i from the equilibrium position, and the entries of K
are various combinations of the individual spring constants. For example, when considering a system of two
masses with only one of the springs being connected to a wall, one has that

_( —(ki+ka) ko
K= ( by =k )
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where k; is the spring constant for spring i.
In order to solve the ODE, set Z(t) = e“*#. Upon substitution this yields the linear system

(K —w?M)7 =0,

i.e., we have a generalized eigenvalue problem. Note that if wy is an eigenvalue with eigenvector vy, then
—wy is also an eigenvalue with the same eigenvector. Further note that since K and M are real, then wy is
an eigenvalue with eigenvector ¥ff. Thus, eigenvalues come in the quartets {w, —w,w*, —w*}. If Rew > 0,
then the oscillations of the masses will grow exponentially, while if Rew = 0 the motion will be oscillatory
with frequency Im w.

This problem has a great deal of structure. Some interesting questions are:

(a) What in general is known about the eigenvalue/eigenvector decomposition of symmetric matrices?

(b) How do the eigenvalues for the full problem relate to those of K and M?

Definition 5.21. Let o = @+ ib € C" be given, where d, b € R". An inner product (-,-) on C™ can be
defined by
(5,0) = ",

where W* = ¢ — id.

Remark 5.22. (a) The inner product (-,-) is the standard one for ¢ € R™.

(b) Note that (rv/, W) = r(¥, @), while (¥, rw) = r* (¥, ).

Proposition 5.23. The inner product (-,-) on C™ satisfies the properties:
(a) (V,w) = (@, v0)"
(b) (¥,7) >0, with equality only if 7 = 0

(c) (rv+ sw, &) = r(v, %) + s(w, Z).

Lemma 5.24. If A € R™*"™ is symmetric, then all of the eigenvalues are real. Furthermore, the
eigenvectors associated with distinct eigenvalues are orthogonal.

Proof: 1t is not difficult to show that (Av, @) = (¢, ATw). Since A is symmetric, this implies that (A7, %) =
(U, Add).
First suppose that A7 = AY. One then has that

and
(A7, 0) = (U, A¥) = (U, \0) = \*(¢, 7).
Since ¥ # 0, this implies that A = A\*, so that A € R.
Suppose that Av; = \;u; for ¢ = 1,2 with A\; # A2. One has that

(AT, T2) = (A7, 02) = A\ (U7, 02),

and
(AT, T) = (¥, Aty) = (U1, AaTa) = Xo(¥1, Ua).
Since A1 # Ao, this implies that (¥, v2) = 0.
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Definition 5.25. O € R™"*" is an orthogonal matrix if its column vectors are an orthogonal with length
one, i.e., they form an orthonormal set.

Proposition 5.26. Suppose that O is an orthogonal matrix. Then O is nonsingular, and O~! = O7.

Proof: The fact that O is nonsingular follows immediately from the fact that the column vectors are linearly
independent. If O = (01, ...,0,), then upon using the fact that

] 1, =i
it is easy to check that OTO = I. O
Proposition 5.27. Suppose that O is an orthogonal matrix. Then (OZ,0y) = (Z, 7).
Proof: We have that
(0%,09) = (#,070g) = (%, ). O

Remark 5.28. As a consequence, multiplication by an orthogonal matrix preserves both the angle between
vectors and the length of vectors.

Theorem 5.29 (Schur’s Theorem). If A € R"*™ has only real eigenvalues, then there is an orthogonal
matrix such that OT AO is upper triangular.

Theorem 5.30. If A € R"*" is symmetric, then there is an orthogonal matrix which diagonalizes A.

Proof: Recall that (AB)T = BTAT. By Schur’s Theorem there is an orthogonal matrix O and upper
triangular matrix T such that OT AO = T'. Since A is symmetric,

7T = (0T A0)T = 0T AT0O = 0T A0,

so that T7 = T, ie., T is symmetric. Since T is upper triangular, 77 is lower triangular. Since T is
symmetric, this implies that T is a diagonal matrix. O

Example. Consider

0o 2 -1
A= 2 3 =2
-1 =2 0
The eigenvalues are A = —1,5. We have that
1 -2 -1
NA+DH =[] 0 ], 1 ]], NA-5s)=[| -2 |]

1 0 1
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Using the Gram-Schmidt procedure, an orthogonal basis for N(A + I) is given by

1 -1
NAa+D=[lo |, 1]
1 1

Normalizing all these vectors to length one gives the matrix O such that OT AO = diag(5, —1, —1).

Again consider the eigenvalue problem (K — w?M)v = 0. First suppose that M = I. There is then an
orthogonal matrix O such that OL KOx = Dy, where Dy = diag(\y, ..., \,) with each \; € R. We have
that w? = . If A > 0, then there will be exponential growth for the system, while if A < 0 the motion will be
oscillatory with frequency w. If one sets @ = O%LZ, so that & = Ok, then the ODE uncouples and becomes

" = O KOgii = Dy,

i.e., 4 = M\u;. Now suppose that M is merely diagonal with m; > 0. Let n(A, B) represents the number
of negative eigenvalues for the eigenvalue problem (A — AB)v = 0. matrix A. Because all of the eigenvalues
of M are positive, it can be shown that n(X, M) = n(K, I). Thus, if oscillatory motion is predicted for the
equal mass case, then this feature will continue to hold true as the masses are varied.
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