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1. Linear Systems

Two examples:

(a) Network flow. The assumption is that flow into nodes equals flow out of nodes, and that branches connect
the various nodes. The nodes can be thought of as intersections, and the branches can be thought of as
streets.

60

x1

30

x2 50

40 x3

(b) Approximation of data - find the line of best fit (least-squares). For example, find a line which best fits
the points (1, 0), (2, 1), (4, 2), (5, 3). The answer is y = −3/5 + 7/10 x.

1.1. Solving Linear Systems

1.1.1. Gauss’ Method

Definition 1.1. A linear equation is of the form

a1x1 + a2x2 + · · ·+ anxn = d,

where

• x1, . . . , xn: variables

• a1, . . . , an ∈ R: coefficients
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• d ∈ R: constant.

A linear system is a collection of one or more linear equations. An n-tuple (s1, . . . , sn) is a solution if
x1 = s1, . . . , xn = sn solves the system.

Example. (i) 3x1 − 4x2 + 6x3 = 5: linear equation

(ii) x1x2 − 3x3 = 4: nonlinear equation

Example. The system
2x1 + x2 = 8, −2x1 + 3x2 = 16

has the solution (x1, x2) = (1, 6).

Theorem 1.2 (Gauss’ Theorem). If a linear system is changed from one to another by the operations

(1) one equation is swapped with another (swapping)

(2) an equation is multiplied by a nonzero constant (rescaling)

(3) an equation is replaced by the sum of itself and a multiple of another (pivoting)

then the two systems have the same set of solutions.

Remark 1.3. These operations are known as the elementary reduction operations, row operations, or
Gaussian operations.

Why? The idea is to convert a given system into an equivalent system which is easier to solve.

Example. Work the system
3x1 + 6x2 = 12, x1 − 2x2 = 4,

which has the solution (4, 0).

Definition 1.4. In each row, the first variable with a nonzero coefficient is the row’s leading variable.
A system is in echelon form if each leading variable is to the right of the leading variable in the row
above it.

Example. Upon using the Gaussian operations one has that

x1 − x3 = 0
3x1 + x2 = 1
x1 − x2 − x3 = −4

−→
x1 − x3 = 0

x2 = 4
x3 = −1

The solution is (−1, 4,−1).

Theorem 1.5. A linear system has either

(1) no solution (inconsistent)

(2) a unique solution

(3) an infinite number of solutions.

In the latter two cases the system is consistent.
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Illustrate this graphically with systems of two equations in two unknowns.

Unique solution Inconsistent Infinitely many solutions

1.1.2. Describing the Solution Set

Definition 1.6. The variables in an echelon-form linear system which are not leading variables are free
variables.

Example. For the system
x1 + 2x2 − 4x4 = 2, x3 − 7x4 = 8

the leading variables are x1, x3, and the free variables are x2, x4. The solution is parameterized by the free
variables via

x1 = 2− 2x2 + 4x4, x3 = 8 + 7x4,

so that the solution set is
{(2− 2x2 + 4x4, x2, 8 + 7x4, x4) : x2, x4 ∈ R}.

Definition 1.7. An m× n matrix A is a rectangular array of numbers with m rows and n columns. If
the numbers are real-valued, then we say that A = (ai,j) ∈ Rm×n, where ai,j ∈ R is the entry in row i
and column j.

Example. Find different entries for the matrix

A =
(

1 3 −4
−2 6 −3

)

Definition 1.8. A vector (column vector) is a matrix with a single column, i.e., ~a ∈ Rn×1 := Rn. A
matrix with a single row is a row vector. The entries of a vector are its components.

Remark 1.9. For vectors we will use the notation ~a = (ai) ∈ Rn.

Definition 1.10. Consider two vectors ~u = (ui), ~v = (vi) ∈ Rn. The algebraic operations are:

(i) vector sum: ~u + ~v = (ui + vi)

(ii) scalar multiplication: r~v = (rvi) for any r ∈ R.
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Consider the linear system

x1 − 3x2 + 2x3 = 8, x1 − x3 = 5, −2x2 + x3 = 7.

Matrices associated with this system are 1 −3 2
1 0 −1
0 −2 1

 (coefficient matrix),

 1 −3 2 8
1 0 −1 5
0 −2 1 7

 (augmented matrix).

The Gaussian operations can be performed on the augmented matrix to put the system into echelon form: 1 −3 2 8
1 0 −1 5
0 −2 1 7

 −→
 1 −3 2 8

0 1 −1 −1
0 0 1 −5

 .

Why? It eases the bookkeeping. The solution is s = (0,−6,−5), which can be written in vector notation as

~s =

 0
−6
−5

 .

Example. The solution to the system

x1 + 2x2 − 4x4 = 2, x3 − 7x4 = 8

is
{(2− 2x2 + 4x4, x2, 8 + 7x4, x4) : x2, x4 ∈ R}.

Using vector notation yields

{


2
0
8
0

+ x2


−2

1
0
0

+ x4


4
0
7
1

 : x2, x4 ∈ R}.

It is clear that the system has infinitely many solutions.

1.1.3. General=Particular+Homogeneous

In the previous example it is seen that the solution has two parts: a particular solution which depends
upon the right-hand side, and a homogeneous solution, which is independent of the right-hand side. We will
see that this feature holds for any linear system. Recall that equation j in a linear system has the form

aj,1x1 + · · ·+ aj,nxn = dj .

Definition 1.11. A linear equation is homogeneous if it has a constant of zero. A linear system is
homogeneous is all of the constants are zero.

Remark 1.12. A homogeneous system always has at least one solution, the zero vector ~0.

Lemma 1.13. For any homogeneous linear system there exist vectors ~β1, . . . , ~βk such that any solution
of the system is of the form

~x = c1
~β1 + · · · ck

~βk, c1, . . . , ck ∈ R.

Here k is the number of free variables in an echelon form of the system.
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Definition 1.14. The set {c1
~β1 + · · · ck

~βk : c1, . . . , ck ∈ R} is the span of the vectors {~β1, . . . , ~βk}.

Proof: The augmented matrix for the system is of the form (A|~0), where A ∈ Rm×n. Use Gauss’ method to
reduce the system to echelon form. Furthermore, use the Gauss-Jordan reduction discussed in Section 3.1 to
put the system in reduced echelon form. The coefficient associated with each leading variable (the leading
entry) will then be one, and there will be zeros above and below each leading entry in the reduced matrix.
For example,

A −→


1 0 0 6
0 1 0 4
0 0 1 −3
0 0 0 0

 .

In row j the reduced system is then of the form

x`j + aj,`j+1x`j+1 + · · ·+ aj,nxn = 0,

which can be rewritten as
x`j

= −aj,`j+1x`j+1 − · · · − aj,nxn.

Since the system is in echelon form, `j−1 < `j < `j+1. Suppose that the free variables are labelled as
xf1 , . . . , xfk

. Since the system is in reduced echelon form, one has that in the above equation aj,`j+i = 0 for
any i ≥ 1 such that x`j+i is a leading variable. Thus, after a renaming of the variables the above equation
can be rewritten as

x`j = βj,f1xf1 + · · ·+ βj,fk
xfk

.

The vectors ~βj , j = 1, . . . , k, can now be constructed, and in vector form the solution is given by

~x = xf1
~β1 + · · ·+ xfk

~βk.

Lemma 1.15. Let ~p be a particular solution for a linear system. The solution set is given by

{~p + ~h : ~h is a homogeneous solution}.

Proof: Let ~s be any solution, and set ~h = ~s− ~p. In row j we have that

aj,1(s1 − p1) + · · ·+ aj,n(sn − pn) = (aj,1s1 + · · ·+ aj,nsn)− (aj,1p1 + · · ·+ aj,npn)
= dj − dj

= 0,

so that ~h = ~s− ~p solves the homogeneous equation.
Now take a vector of the form ~p + ~h, where ~p is a particular solution and ~h is a homogeneous solution.

Similar to above,

aj,1(p1 + h1) + · · ·+ aj,n(pn + hn) = (aj,1p1 + · · ·+ aj,npn) + (aj,1h1 + · · ·+ aj,nhn)
= dj + 0
= dj ,

so that ~s = ~p + ~h solves the system.

Remark 1.16. While a homogeneous solution always exists, this is not the case for a particular solution.
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Example. Consider the linear system

x1 + x3 + x4 =−1
2x1 − x2 + x4 = 3
x1 + x2 + 3x3 + 2x4 = b

−→
x1 + x3 + x4 = −1

x2 + 2x3 + x4 = 5
0 = b + 1

The homogeneous solution is given by

~h = x3


−1
−2

1
0

+ x4


−1
−1

0
1

 , x3, x4 ∈ R.

If b 6= −1, then no particular solution exists. Otherwise, one has that

~p =


−1

5
0
0

 .

If b = −1, the solution set is given by ~x = ~p + ~h.

Definition 1.17. A square matrix is nonsingular if it is the coefficient matrix for a homogeneous system
with the unique solution ~x = ~0. Otherwise, it is singular.

Remark 1.18. In order for a square matrix to be nonsingular, it must be true that for the row-reduced
matrix there are no free variables. Consider the two examples:

A −→

 1 0 −1
0 1 2
0 0 0

 , B −→

 1 0 0
0 1 0
0 0 1

 .

The homogeneous system associated with A has infinitely many solutions, whereas the one associated with
B has only one.

1.3. Reduced Echelon Form

1.3.1. Gauss-Jordan Reduction

Definition 1.19. A matrix is in reduced echelon form if

(a) it is in echelon form

(b) each leading entry is a one

(c) each leading entry is the only nonzero entry in its column.

Definition 1.20. The Gauss-Jordan reduction is the process of putting a matrix into reduced echelon
form.
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Example. Consider 1 2 3 4
5 6 7 8
9 10 11 12

 echelon−−−−→

 1 2 3 4
0 1 2 3
0 0 0 0

 reduced echelon−−−−−−−−−−→

 1 0 −1 −2
0 1 2 3
0 0 0 0

 .

The solution is then given by

~x =

 −2
3
0

+ c1

 1
−2

1

 , c1 ∈ R.

Remark 1.21. The above coefficient matrix is singular.

Definition 1.22. Two matrices are row equivalent if they can be row-reduced to a common third matrix
by the elementary row operations.

Example. This can be written as A −→ C ←− B, i.e., from above

A =

 1 2 3 4
5 6 7 8
9 10 11 12

 , B =

 1 0 −1 −2
0 1 2 3
0 0 0 0

 , C =

 1 2 3 4
0 1 2 3
0 0 0 0

 .

Remark 1.23. (a) Elementary row operations are reversible.

(b) If two coefficient matrices are row equivalent, then the associated homogeneous linear systems have the
same solution.

1.3.2. Row Equivalence

Definition 1.24. A linear combination of the vectors ~x1, . . . , ~xn is an expression of the form∑
i

ci~xi = c1~x1 + · · ·+ cn~xn,

where c1, . . . , cn ∈ R.

Remark 1.25. The span of the set {~x1, . . . , ~xn} is the set of all linear combinations of the vectors.

Lemma 1.26 (Linear Combination Lemma). A linear combination of linear combinations is a linear
combination.

Proof: Let the linear combinations
∑

i c1,i~xi through
∑

i cm,i~xi be given, and consider the new linear
combination

d1

(
n∑

i=1

c1,i~xi

)
+ · · ·+ dm

(
n∑

i=1

cm,i~xi

)
.

Multiplying out and regrouping yields(
m∑

i=1

dici,1

)
~x1 + · · ·+

(
m∑

i=1

dici,n

)
~xn,

which is again a linear combination of ~x1, . . . , ~xn.
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Corollary 1.27. If two matrices are row equivalent, then each row of the second is a linear combination
of the rows of the first.

Proof: The idea is that one row-reduces a matrix by taking linear combinations of rows. If A and B are
row equivalent to C, then each row of C is some linear combination of the rows of A and another linear
combination of the rows of B. Since row-reduction is reversible, one can also say that the rows of B are
linear combinations of the rows of C. By the Linear Combination Lemma one then gets that the rows of B
are linear combinations of the rows of A.

Definition 1.28. The form of an m × n matrix is the sequence 〈`1, . . . , `m〉, where `i is the column
number of the leading entry if row i, and `i =∞ if row i has no leading entry (i.e., it is a zero row).

Example. If

A =

 1 2 0 4
0 0 1 −3
0 0 0 0

 ,

then the form is 〈1, 3,∞〉.

Lemma 1.29. If two echelon form matrices are row equivalent, then their forms are equal sequences.

Remark 1.30. For a counterexample to an ”if and only if” statement, consider

A =

 1 0 −1
0 1 2
0 0 0

 , B =

 1 0 1
0 1 −2
0 0 0

 .

Both have the form 〈1, 2,∞〉, yet the matrices are clearly not row equivalent.

Proof: Let B,D ∈ Rm×n be row equivalent. Let the form associated with B be given by 〈`1, . . . , `m〉, and
let the form associated with D by given by 〈k1, . . . , km〉. Let the rows of B be denoted by β1, . . . , βm, with

βj = (βj,1, . . . , βj,m),

and the rows of D by δ1, . . . , δm, with
δj = (δj,1, . . . , δj,m),

We need to show that `i = ki for each i. Let us first show that it holds for i = 1. The rest will follow by
an induction argument (Problem 2.22). If β1 is the zero row, then since B is in echelon form the matrix B
is the zero matrix. By the above corollary this implies that D is also the zero matrix, so we are then done.
Therefore, assume that β1 and δ1 are not zero rows. Since B and D are row equivalent, we then have that

β1 = s1δ1 + s2δ2 + · · ·+ smδm,

or

β1,j =
m∑

i=1

siδi,j ;

in particular,

β1,`1 =
m∑

i=1

siδi,`1 .

By the definition of the form we have that βi,j = 0 if j < `1, and β1,`1 6= 0. Similarly, δi,j = 0 if j < k1,
and δ1,k1 6= 0. If `1 < k1 then the right-hand side of the above equation is zero. Since β1,`1 6= 0, this then
clearly implies that `1 ≥ k1. Writing δ1 as a linear combination of β1, . . . , βm and using the same argument
as above shows that `1 ≤ k1; hence, `1 = k1.
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Corollary 1.31. Any two echelon forms of a matrix have the same free variables, and consequently the
same number of free variables.

Lemma 1.32. Each matrix is row equivalent to a unique reduced echelon form matrix.

Example. Suppose that

A −→

 1 0 −3
0 1 2
0 0 0

 , B −→

 1 0 −2
0 1 3
0 0 0

 ,

(a) Are A and B row equivalent? No.

(b) Is either matrix nonsingular? No.
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2. Vector Spaces

2.1. Definition of Vector Space

2.1.1. Definition and Examples

Definition 2.1. A vector space over R consists of a set V along with the two operations ‘+’ and ‘·’
such that

(a) if ~u,~v, ~w ∈ V , then ~v + ~w ∈ V and

• ~v + ~w = ~w + ~v

• (~v + ~w) + ~u = ~v + (~w + ~u)

• there is a ~0 ∈ V such that ~v +~0 = ~v for all ~v ∈ V (zero vector)

• for each ~v ∈ V there is a ~w ∈ V such that ~v + ~w = ~0 (additive inverse)

(b) if r, s ∈ R and ~v, ~w ∈ V , then r · ~v ∈ V and

• (r + s) · ~v = r · ~v + s · ~v
• r · (~v + ~w) = r · ~v + r · ~w
• (rs) · ~v = r · (s · ~v)

• 1 · ~v = ~v.

Example. V = Rn with ~v + ~w = (vi + wi) and r · ~v = (rvi).

Example. V = Rm×n with A + B = (ai,j + bi,j) and r ·A = (rai,j).

Example. V = Pn = {
∑n

i=0 aix
i : a0, . . . , an ∈ R} with (p + q)(x) = p(x) + q(x) and (r · p)(x) = rp(x).

Remark 2.2. The set V = P∞ = {p ∈ Pn : n ∈ N} is an infinite-dimensional vector space, whereas Pn

is finite-dimensional.

Example. V = {
∑n

i=0 ai cos(iθ) : a0, . . . , an ∈ R} with (f + g)(x) = f(x) + g(x) and (r · f)(x) = rf(x).

Example. V = R+ with x + y = xy and r · x = xr. We have that with ~0 = 1 this is a vector space.

Example. V = R2 with

~v + ~w =
(

v1 + w1

v2 + w2

)
, r · ~v =

(
rv1

v2

)
.

The answer is no, as the multiplicative identities such as (r + s) · ~v = r · ~v + s · ~v are violated.

Example. V = R2 with

~v + ~w =
(

v1 + w1

v2 + w2

)
, r · ~v =

(
rv1

0

)
.

The answer is no, as there is no multiplicative identity.

Example. The set {f : R→ R : f ′′+ f = 0} is a vector space, whereas the set {f : R→ R : f ′′+ f = 1}
is not.

2.1.2. Subspaces and Spanning Sets
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Definition 2.3. A subspace is a subset of a vector space that is itself a vector space under the inherited
operations.

Remark 2.4. Any vector space V has the trivial subspace {~0} and the vector space itself as subspaces.
These are the improper subspaces. Any other subspaces are proper.

Lemma 2.5. A nonempty S ⊂ V is a subspace if ~x, ~y ∈ S implies that r · ~x + s · ~y ∈ S for any r, s ∈ R.

Proof: By assumption the subset S is closed under vector addition and scalar multiplication. Since S ⊂ V
the operations in S inherit the same properties as those operations in V ; hence, the set S is a subspace.

Example. Examples of subspaces are

(a) S = {~x ∈ R3 : x1 + 2x2 + 5x3 = 0}

(b) S = {p ∈P6 : p(3) = 0}

(c) S = {A ∈ Rn×n : ai,j = 0 for i > j} (upper triangular matrices)

(d) S = {A ∈ Rn×n : ai,j = 0 for i < j} (lower triangular matrices)

(e) If A ∈ Rn×n, the trace of A, denoted trace(A), is given by trace(A) =
∑

i ai,i. The set

S = {A ∈ Rn×n : trace(A) = 0}

Definition 2.6. If S = {~x1, . . . , ~xn}, the span of S will be denoted by [S].

Remark 2.7. From now on the multiplication r · ~x ∈ V will be written r~x ∈ V , where the multiplication
will be assumed to be the multiplication associated with V .

Lemma 2.8. The span of any nonempty subset is a subspace.

Proof: Let ~u,~v ∈ [S] be given. There then exist scalars such that

~u =
∑

i

ri~xi, ~v =
∑

i

si~xi.

For given scalars p, q ∈ R one then sees that

p~u + q~v = p

(∑
i

ri~xi

)
+ q

(∑
i

si~xi

)
=
∑

i

(pri + qsi)~xi,

so that p~u + q~v ∈ [S]. Hence, [S] is a subspace.

Example. The set of solutions to a homogeneous linear system with coefficient matrix A will be denoted
by N (A), the null space of A. It has been previously shown that there is a set of vectors S = {~β1, . . . , ~βk}
such that N (A) = [S]. Hence, N (A) is a subspace.
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2.2. Linear Independence

2.2.1. Definition and Examples

Definition 2.9. The vectors ~v1, . . . , ~vn ∈ V are linearly independent if and only if the only solution to

c1~v1 + · · ·+ cn~vn = ~0

is c1 = · · · = cn = 0. Otherwise, the vectors are linearly dependent.

Example. (a) {~v1, ~v2, ~v3} ⊂ R3, where

~v1 =

 1
3
−1

 , ~v2 =

 −5
−8

2

 , ~v3 =

 3
−5

3

 ,

is a linearly dependent set, as 7~v1 + 2~v2 + ~v3 = ~0

(b) {1 + x, 1− x, 1− 3x + x2} ⊂P2 is a linearly independent set

Lemma 2.10. If S ⊂ V and ~v ∈ V is given, then

[S] = [S ∪ {~v}] if and only if ~v ∈ [S].

Proof: If [S] = [S ∪ {~v}], then since ~v ∈ [S ∪ {~v}] one must have that ~v ∈ [S].
Now suppose that ~v ∈ [S], with S = {~x1, . . . , ~xn}, so that ~v =

∑
i ci~xi. If ~w ∈ [S ∪ {~v}], then one can

write ~w = d0~v +
∑

i di~xi, which can be rewritten as

~w =
∑

i

(d0ci + di)~xi ∈ [S].

Hence, [S ∪ {~v}] ⊆ [S]. It is clear that [S] ⊆ [S ∪ {~v}].

Lemma 2.11. If S ⊂ V is a linearly independent set, then for any ~v ∈ V the set S ∪ {~v} is linearly
independent if and only if ~v /∈ [S].

Proof: Let S = {~x1, . . . , ~xn}. If ~v ∈ [S], then ~v =
∑

i ci~xi, so that −~v +
∑

i ci~xi = ~0. Hence, S ∪ {~v} is a
linearly dependent set.

Now suppose that S ∪ {~v} is a linearly dependent set. There then exist constants c0, . . . , cn, some of
which are nonzero, such that c0~v +

∑
i ci~xi = ~0. If c0 = 0, then

∑
i ci~xi = ~0, which contradicts the fact that

the set S is linearly independent. Since c0 6= 0, upon setting di = −ci/c0 one can then write ~v =
∑

i di~xi, so
that ~v ∈ [S].

Corollary 2.12. Let S = {~x1, . . . , ~xn} ⊂ V , and define

S1 = {~x1}, Sj = Sj−1 ∪ {~xj} j = 2, . . . , n.

S is linearly dependent set if and only if there is an 1 ≤ ` ≤ n such that the set S`−1 is a linearly
independent set and S` is a linearly dependent set.
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Remark 2.13. In other words, ~x` =
∑`−1

i=1 ci~xi.
Example. In a previous example we had S = {~v1, ~v2, ~v3} with S2 = {~v1, ~v2} being a linearly independent
set and S2 ∪ {~v3} being a linearly dependent set. The above results imply that [S2] = [S].

Theorem 2.14. Let S = {~x1, . . . , ~xn} ⊂ V . The set S has a linearly independent subset with the same
span.

Proof: Suppose that S is not a linearly independent set. This implies that for some 2 ≤ ` ≤ n that
~x` =

∑`−1
i=1 ci~xi. Now define S′ = {~x1, . . . , ~x`−1, ~x`+1, . . . , ~xn}. Since S = S′ ∪ {~x`} and ~x` ∈ [S′], one

has that [S] = [S′]. When considering S′, remove the next dependent vector (if it exists) from the set
{~x`+1, . . . , ~xn}, and call this new set S′′. Using the same reasoning as above, [S′] = [S′′], so that [S] = [S′′].
Continuing in this fashion and using an induction argument, we can then remove all of the linearly dependent
vectors without changing the span.

2.3. Basis and Dimension

2.3.1. Basis

Definition 2.15. The set S = {~β1, ~β2, . . . } is a basis for V if

(a) the vectors are linearly independent

(b) V = [S]

Remark 2.16. A basis will be denoted by 〈~β1, ~β2, . . . 〉.

Definition 2.17. Set ~ej = (ej,i) ∈ Rn to be the vector which satisfies ej,i = δi,j . The standard basis
for Rn is given by 〈~e1, . . . , ~en〉.

Remark 2.18. A basis is not unique. For example, one basis for R2 is the standard basis, whereas another
is

〈
(

1
2

)
,

(
2
5

)
〉.

Example. (a) Two bases for P3 are 〈1, x, x2, x3〉 and 〈1− x, 1 + x, 1 + x + x2, x + x3〉.

(b) Consider the subspace S ⊂ R2×2 which is given by

S = {A ∈ R2×2 : a1,1 + 2a2,2 = 0, a1,2 − 3a2,1 = 0}.

Since any B ∈ S is of the form

B = c1

(
−2 0

0 1

)
+ c2

(
0 3
1 0

)
,

and the two above matrices are linearly independent, a basis for S is given by

〈
(
−2 0

0 1

)
,

(
0 3
1 0

)
〉.
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Lemma 2.19. The set S = {~β1, . . . , ~βn} is a basis if and only if each ~v ∈ V can be expressed as a linear
combination of the vectors in S in a unique manner.

Proof: If S is a basis, then by definition ~v ∈ [S]. Suppose that ~v can be written in two different ways, i.e.,

~v =
∑

i

ci
~βi, ~v =

∑
i

di
~βi.

One clearly then has that
∑

i(ci − di)~βi = ~0, which, since the vectors in S are linearly independent, implies
that ci = di for i = 1, . . . , n.

Suppose that V = [S]. Since ~0 =
∑

i 0·~βi, and since vectors are expressed uniquely as linear combinations
of the vectors of S, by definition the vectors in S are linearly independent. Hence, S is a basis.

Definition 2.20. Let B = 〈~β1, . . . , ~βn〉 be a basis for V . For a given ~v ∈ V there are unique constants
c1, . . . , cn such that ~v =

∑
i ci

~βi. The representation of ~v with respect to B is given by

RepB(~v) :=


c1

c2

...
cn


B

.

The constants c1, . . . , cn are the coordinates of ~v with respect to B.

Example. For P3, consider the two bases B = 〈1, x, x2, x3〉 and D = 〈1− x, 1 + x, 1 + x + x2, x + x3〉. One
then has that

RepB(1− 2x + x3) =


1
−2

0
1


B

, RepD(1− 2x + x3) =


2
−1

0
1


D

.
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2.3.2. Dimension

Definition 2.21. A vector space is finite-dimensional if it has a basis with only finitely many vectors.

Example. An example of an infinite-dimensional space is P∞, which has as a basis 〈1, x, . . . , xn, . . . 〉.

Definition 2.22. The transpose of a matrix A ∈ Rm×n, denoted by AT ∈ Rn×m, is formed by inter-
changing the rows and columns of A.

Example.

A =

 1 4
2 5
3 6

 −→ AT =
(

1 2 3
4 5 6

)
.

Theorem 2.23. In any finite-dimensional vector space all of the bases have the same number of ele-
ments.

Proof: Let B = 〈~β1, . . . , ~βk〉 be one basis, and let D = 〈~δ1, . . . , ~δ`〉 be another basis. Suppose that k > `. For
each i = 1, . . . , k we can write ~βi =

∑
j ai,j

~δj , which yields a matrix A ∈ Rk×`. Now let ~v ∈ V be given. Since
B and D are bases, there are unique vectors RepB(~v) = ~vB = (vB

i ) ∈ Rk and RepD(~v) = ~vD = (vD
i ) ∈ R`

such that

~v =
k∑

i=1

vB
i

~βi =
∑̀
j=1

vD
j

~δj .

The above can be rewritten as ∑̀
j=1

(
k∑

i=1

ai,jv
B
i

)
~δj =

∑̀
j=1

vD
j

~δj .

This then implies that the vector ~vB is a solution to the linear system with the augmented matrix (AT |~vD),
where AT = (aj,i) ∈ R`×k is the transpose of A. Since ` < k, when AT is row-reduced it will have free
variables, which implies that the linear system has an infinite number of solutions. This contradiction yields
that k ≤ `.

If k < `, then by writing ~δi =
∑

j ci,j
~βj and using the above argument one gets that k ≥ `. Hence,

k = `.

Definition 2.24. The dimension of a vector space V, dim(V ), is the number of basis vectors.

Example. (a) Since the standard basis for Rn has n vectors, dim(Rn) = n.

(b) Since a basis for Pn is 〈1, x, . . . , xn〉, one has that dim(Pn) = n + 1.

(c) Recall that the subspace

S = {A ∈ R2×2 : a1,1 + 2a2,2 = 0, a1,2 − 3a2,1 = 0}.

has a basis

〈
(
−2 0

0 1

)
,

(
0 3
1 0

)
〉.

This implies that dim(S) = 2.
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Corollary 2.25. No linearly independent set can have more vectors than dim(V ).

Proof: Suppose that S = {~x1, . . . , ~xn} is a linearly independent set with n > dim(V ). Since S ⊂ V one
has that [S] ⊂ V . Furthermore, since the set is linearly independent, dim([S]) = n. This implies that
dim(V ) ≥ n, which is a contradiction.

Corollary 2.26. Any linearly independent set S can be expanded to make a basis.

Proof: Suppose that dim(V ) = n, and that dim([S]) = k < n. There then exist n− k linearly independent
vectors ~v1, . . . , ~vn−k such that ~vi /∈ [S]. The set S′ = S ∪ {~v1, . . . , ~vn−k} is a linearly independent set with
dim([S′]) = n. As a consequence, S′ is a basis for V .

Corollary 2.27. If dim(V ) = n, then a set of n vectors S = {~x1, . . . , ~xn} is linearly independent if and
only if V = [S].

Proof: Suppose that V = [S]. If the vectors are not linearly independent, then (upon a possible reordering)
there is an ` < n such that for S′ = {~x1, . . . , ~x`} one has [S] = [S′] with the vectors in S′ being linearly
independent. This implies that V = [S′], and that dim(V ) = ` < n.

Now suppose that the vectors are linearly independent. If [S] ⊂ V , then there is at least one vector ~v
such that S ∪ {~v} is linearly independent with [S ∪ {~v}] = V . This implies that dim(V ) ≥ n + 1.

Remark 2.28. Put another way, the above corollary states that if dim(V ) = n and the set S = {~x1, . . . , ~xn}
is linearly independent, then S is a spanning set for V .

2.3.3. Vector Spaces and Linear Systems

Definition 2.29. The null space of a matrix A, denoted by N (A), is the set of all solutions to the
homogeneous system for which A is the coefficient matrix.

Example. Consider

A =

 1 2 3
4 5 6
7 8 9

 −→
 1 0 −1

0 1 2
0 0 0

 .

A basis for N (A) is given by

〈

 1
−2

1

〉.

Definition 2.30. The row space of a matrix A, denoted by Rowspace(A), is the span of the set of the
rows of A. The row rank is the dimension of the row space.
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Example. If

A =

 1 0 −1
0 1 2
0 0 0

 ,

then Rowspace(A) = [{
(
1 0 −1

)
,
(
0 1 2

)
}], and the row rank is 2.

Lemma 2.31. The nonzero rows of an echelon form matrix make up a linearly independent set.

Proof: We have already seen that in an echelon form matrix no nonzero row is a linear combination of the
other rows.

Corollary 2.32. Suppose that a matrix A has been put in echelon form. The nonzero rows of the
echelon form matrix are a basis for Rowspace(A).

Proof: If A −→ B, where B is in echelon form, then it is known that each row of A is a linear combination
of the rows of B. The converse is also true; hence, Rowspace(A) = Rowspace(B). Since the rows of B are
linearly independent, they form a basis for Rowspace(B), and hence Rowspace(A).

Definition 2.33. The column space of a matrix A, denoted by R(A), is the span of the set of the
columns of A. The column rank is the dimension of the column space.

Remark 2.34. A basis for R(A) is found by determining Rowspace(AT ), and the column rank of A is the
dimension of Rowspace(AT ).
Example. Consider

A =

 1 1 2
1 3 10
1 5 18

 −→
 1 0 −2

0 1 4
0 0 0

 , AT =

 1 1 1
1 3 5
2 10 18

 −→
 1 0 −1

0 1 2
0 0 0

 .

A basis for Rowspace(A) is 〈
(
1 0 −1

)
,
(
0 1 4

)
〉, and a basis for R(A) is

〈

 1
0
−1

 ,

 0
1
2

〉.
Theorem 2.35. The row rank and column rank of a matrix are equal.

Proof: First, let us note that row operations do not change the column rank of a matrix. If A = (~a1 . . . ~an) ∈
Rm×n, where each column ~ai ∈ Rm, then finding the set of homogeneous solutions for the linear system with
coefficient matrix A is equivalent to solving

c1~a1 + · · ·+ cn~an = ~0.

Row operations leave unchanged the the set of solutions (c1, . . . , cn); hence, the linear independence of the
vectors is unchanged, and the dependence of one vector on the others remains unchanged.

Now bring the matrix to reduced echelon form, so that each column with a leading entry is one of the
~ei’s from the standard basis. The row rank is equal to the number of rows with leading entries. The column
rank of the reduced matrix is equal to that of the original matrix. It is clear that the column rank of the
reduced matrix is also equal to the number of leading entries.
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Definition 2.36. The rank of a matrix A, denoted by rank(A), is its row rank.

Remark 2.37. Note that the above statements imply that rank(A) = rank(AT ).

Theorem 2.38. If A ∈ Rm×n, then rank(A) + dim(N (A)) = n.

Proof: Put the matrix A in reduced echelon form. One has that rank(A) is the number of leading entries,
and that dim(N (A)) is the number of free variables. It is clear that these numbers sum to n.

2.3.4. Combining Subspaces

Definition 2.39. If W1, . . . ,Wk are subspaces of V , then their sum is given by

W1 + · · ·+ Wk = [W1 ∪ · · · ∪Wk].

Let a basis for Wj be given by 〈~w1,j , . . . , ~w`(j),j〉. If ~v ∈ W1 + · · · + Wk, then this implies there are
constants ci,j such that

~v =
`(1)∑
i=1

ci,1 ~wi,1 + · · ·+
`(k)∑
i=1

ci,k ~wi,k.

Note that
∑

i ci,j ~wi,j ∈ Wj . For example, when considering P3 suppose that a basis for W1 is 〈1, 1 + x2〉,
and that a basis for W2 is 〈x, 1 + x, x3〉. If p ∈W1 + W2, then

p(x) = c1 + c2(1 + x2) + d1x + d2(1 + x) + d3x
3.

Q: How does the dimension of each Wi relate to the dimension of W1 + · · ·+ Wk? In the above example,
dim(W1) = 2,dim(W2) = 3, but dim(P3) = dim(W1 + W2) = 4. Thus, for this example dim(W1 + W2) 6=
dim(W1) + dim(W2).

Definition 2.40. A collection of subspaces {W1, . . . ,Wk} is independent if for each i = 1, . . . , k,

Wi ∩ (∪j 6=i Wj) = {~0}.

Example. Suppose that

W1 = [

 1
0
0

], W2 = [

 0
1
0

], W3 = [

 1
1
0

 ,

 0
0
1

].

It is clear that Wi ∩Wj = {~0} for i 6= j. However, the subspaces are not independent, as

W3 ∩ (W1 ∪W2) = [

 1
1
0

].
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Definition 2.41. A vector space V is the direct sum of the subspaces W1, . . . ,Wk if

(a) the subspaces are independent

(b) V = W1 + · · ·+ Wk.

In this case we write V = W1 ⊕ · · · ⊕Wk.

Example. (a) Rn = [~e1]⊕ [~e2]⊕ · · · ⊕ [~en]

(b) Pn = [1]⊕ [x]⊕ · · · ⊕ [xn]

Lemma 2.42. If V = W1 ⊕ · · · ⊕Wk, then

dim(V ) =
∑

i

dim(Wi).

Example. In a previous example we had that R3 = W1 + W2 + W3, with

dim(W1) = dim(W2) = 1,dim(W3) = 2.

Thus, the sum cannot be direct.

Proof: First show that the result is true for k = 2, and then use induction to prove the general result.
Let a basis for W1 be given by 〈~β1, . . . , ~βk〉, and a basis for W2 be given by 〈~δ1, . . . , ~δ`〉. This yields
that dim(W1) = k and dim(W2) = `. Since W1 ∩ W2 = {~0}, the set {~β1, . . . , ~βk, ~δ1, . . . , ~δ`} is linearly
independent, and forms a basis for [W1 ∪W2]. Since V = [W1 ∪W2], this then yields that a basis for V is
〈~β1, . . . , ~βk, ~δ1, . . . , ~δ`〉; thus,

dim(V ) = k + ` = dim(W1) + dim(W2).

Definition 2.43. If V = W1 ⊕W2, then the subspaces W1 and W2 are said to be complements.

Definition 2.44. For vectors ~u,~v ∈ Rn, define the dot product (or inner product) to be

~u · ~v =
n∑

i=1

uivi.

The dot product has the properties that

(a) ~u · ~v = ~v · ~u

(b) (a~u + b~v) · ~w = a~u · ~w + b~v · ~w

(c) ~u · ~u ≥ 0, with ~u · ~u = 0 if and only if ~u = ~0.
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Definition 2.45. If U ⊂ Rn is a subspace, define the orthocomplement of U to be

U⊥ = {~v ∈ Rn : ~v · ~u = 0 for all ~u ∈ U}.

Proposition 2.46. U⊥ is a subspace.

Proof: Let ~v, ~w ∈ U⊥. Since
(a~v + b~w) · ~u = a~v · ~u + b~w · ~u = 0

for any ~u ∈ U , this implies that a~v + b~w ∈ U⊥. Hence U⊥ is a subspace.

Example. If U = [~e1] ⊂ R2, then U⊥ = [~e2], and if U = [~e1, ~e2] ⊂ R3, then U⊥ = [~e3].
Remark 2.47. If A = (~a1 . . . ~an) ∈ Rm×n, recall that

R(A) = [~a1 . . . ~an].

Thus, ~b ∈ R(A) if and only if ~b =
∑

i ci~ai. Furthermore,

N (A) = {~x = (xi) :
∑

i

xi~ai = ~0}.

Theorem 2.48. If A ∈ Rm×n, then N (AT ) = R(A)⊥.

Proof: Suppose that ~x ∈ N (AT ), so that ~x · ~ai = 0 for i = 1, . . . , n. As a consequence, ~x · (
∑

i ci~ai) = 0,
so that ~x ∈ R(A)⊥. Hence, N (AT ) ⊂ R(A)⊥. Similarly, if ~y ∈ R(A)⊥, one gets that ~y ∈ N (AT ), so that
R(A)⊥ ⊂ N (AT ).

Remark 2.49. Alternatively, one has that N (A) = R(AT )⊥.

Theorem 2.50. If U ⊂ Rn is a subspace, then Rn = U ⊕ U⊥.

Proof: Let a basis for U be given by 〈~β1, . . . , ~βk〉, and set A = (~β1 . . . ~βk) ∈ Rn×k. By construc-
tion, rank(A) = k (and rank(AT ) = k). By the previous theorem, we have that U⊥ = N (AT ). Since
dim(N (AT )) + rank(AT ) = n, we get that dim(U⊥) = n− k.

We must now show that U ∩ U⊥ = {~0}. Let ~δ ∈ U ∩ U⊥, which implies that ~δ =
∑

i ci
~βi. By using the

linearity of the inner product

~δ · ~δ =
k∑

i=1

ci(~βi · ~δ) = 0,

so that ~δ = ~0.

Remark 2.51. A consequence of the above theorem is that (U⊥)⊥ = U .

Example. Suppose that a basis for U is 〈~β1, . . . , ~βk〉. The above theorem shows us how to compute a basis
for U⊥. Simply construct the matrix A = (~β1 . . . ~βk), and then find a basis for N (AT ) = U⊥. For example,
suppose that U = [~a1,~a2], where

~a1 =


1
0
2
4

 , ~a2 =


3
−1

4
7

 .
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Since

AT −→
(

1 0 2 4
0 1 2 5

)
,

one has that U⊥ = N (AT ) = [~δ1, ~δ2], where

~δ1 =


−2
−2

1
0

 , ~δ2 =


−4
−5

0
1

 .

Corollary 2.52. Consider a linear system whose associated augmented matrix is (A|~b). The system is

consistent if and only if ~b ∈ N (AT )⊥.

Proof: If A = (~a1 . . . ~an), then the system is consistent if and only if ~b ∈ R(A), i.e., ~b =
∑

i ci~ai. By the
above theorem R(A) = N (AT )⊥.

Example. As a consequence, the system is consistent if and only if ~b ·~δi = 0, where 〈~δ1, . . . , ~δk〉 is a basis for
N (AT ). For example, suppose that A is as in the previous example. Then for ~b = (bi) ∈ R4, the associated
linear system will be consistent if and only if ~δ1 ·~b = 0, ~δ2 ·~b = 0. In other words, the components of the
vector ~b must satisfy the linear system

−2b1 − 2b2 + b3 = 0
−4b1 − 5b2 + b4 = 0

which implies that ~b ∈ S = [~b1,~b2], where

~b1 =


1
0
2
4

 , ~b2 =


0
1
2
5

 .

Note that S = R(A), so that a basis for R(A) is 〈~b1,~b2〉. Further note that this is consistent with the reduced
echelon form of AT .
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3. Maps Between Spaces

3.1. Isomorphisms

3.1.1. Definition and Examples

Definition 3.1. Let V and W be vector spaces. A map f : V → W is one-to-one if ~v1 6= ~v2 implies
that f(~v1) 6= f(~v2). The map is onto if for each ~w ∈W there is a ~v ∈ V such that f(~v) = ~w.

Example. (a) The map f : Pn → Rn+1 given by

a0 + a1x + · · ·+ anxn −→


a0

a1

...
an


is one-to-one and onto.

(b) The map f : R2×2 → R4 given by (
a b
c d

)
−→


a
b
c
d


is one-to-one and onto.

Definition 3.2. The map f : V →W is an isomorphism if

(a) f is one-to-one and onto

(b) f is linear, i.e.,

• f(~v1 + ~v2) = f(~v1) + f(~v2)

• f(r~v) = rf(~v) for any r ∈ R

We write V ∼= W , and say that V is isomorphic to W .

Remark 3.3. If V ∼= W , then we can think that V and W are the ”same”.

Example. (a) In the above examples it is easy to see that the maps are linear. Hence, P(n) ∼= Rn+1 and
R2×2 ∼= R4.

(b) In general, Rm×n ∼= Rmn.

Definition 3.4. If f : V → V is an isomorphism, then we say that f is an automorphism.

Example. (a) The dilation map ds : R2 → R2 given by ds(~v) = s~v for some nonzero s ∈ R is an automor-
phism.



Math 321 Class Notes 24

(b) The rotation map tθ : R2 → R2 given by

tθ(~v) =
(

cos θ v1 − sin θ v2

sin θ v1 + cos θ v2

)
is an automorphism.

Lemma 3.5. If f : V →W is linear, then f(~0) = ~0.

Proof: Since f is linear, f(~0) = f(0 · ~v) = 0 · f(~v) = ~0.

Lemma 3.6. The statement that f : V →W is linear is equivalent to

f(c1~v1 + · · ·+ cn~vn) = c1f(~v1) + · · ·+ cnf(~vn).

Proof: Proof by induction. By definition the statement holds for n = 1, so now suppose that it holds for
n = N . This yields

f(
N∑

i=1

ci~vi + cN+1~vN+1) = f(
N∑

i=1

ci~vi) + f(cN+1~vN+1)

=
N∑

i=1

cif(~vi) + f(cN+1~vN+1).

Definition 3.7. Let U, V be vector spaces. The external direct sum, W = U × V , is defined by

W = {(~u,~v) : ~u ∈ U, ~v ∈ V },

along with the operations

~w1 + ~w2 = (~u1 + ~u2, ~v1 + ~v2), r · ~w = (r~u, r~v).

Lemma 3.8. The external direct sum W = U ×V is a vector space. Furthermore, dim(W ) = dim(U)+
dim(V ).

Proof: It is easy to check that W is a vector space. Let Su = {~u1, . . . , ~uk} be a basis for U , and let
SV = {~vk+1, . . . , ~v`} be a basis for V . Given a w = (~u,~v) ∈W , it is clear that one can write

~w = (
∑

i

ci~ui,
∑

j

dj~vj);

hence, a potential basis for W is

~wi =

{
(~ui,~0), i = 1, . . . , k

(~0, ~vi), i = k + 1, . . . , `.
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We need to check that the vectors ~w1, . . . , ~w` are linearly independent. Writing
∑

i ci ~wi = ~0 is equivalent to
the equations

k∑
i=1

ci~ui = ~0,
∑̀

i=k+1

ci~vi = ~0.

Since SU and SV are bases, the only solution is ci = 0 for all i.

Example. A basis for P2 × R2 is given by

〈(1,~0), (x,~0), (x2,~0), (0, ~e1), (0, ~e2)〉,

and P2 × R2 ∼= R5 via the isomorphism

(a0 + a1x + a2x
2, c1~e1 + c2~e2) −→


a0

a1

a2

c1

c2

 .

3.1.2. Dimension Characterizes Isomorphism

Note that in all of the examples up to this point, if U ∼= V , then it was true that dim(U) = dim(V ). The
question: does the dimension of two vector spaces say anything about whether or not they are isomorphic?

Lemma 3.9. If V ∼= W , then dim(V ) = dim(W ).

Proof: Let f : V → W be an isomorphism. Let 〈~β1, . . . , ~βn〉 be a basis for V , and consider the set
SW = {f(~β1), . . . , f(~βn)}. First, the set is linearly independent, as

~0 =
n∑

i=1

cif(~βi) = f(
n∑

i=1

ci
~βi)

implies that
∑

i ci
~βi = ~0 (f is one-to-one), which further implies that ci = 0 for all i. Since f is onto, for

each ~w ∈ W there is a ~v ∈ V such that f(~v) = ~w. Upon writing ~v =
∑

i di
~βi and using the linearity of the

function f we get that

~w =
n∑

i=1

dif(~βi).

Hence, SW is a basis, and we then have the result.

Lemma 3.10. If dim(V ) = dim(W ), then the two spaces are isomorphic.

Proof: It will be enough to show that if dim(V ) = n, then V ∼= Rn. A similar result will yield W ∼= Rn,
which would then yield V ∼= Rn ∼= W , i.e., V ∼= W .

Let B = 〈~β1, . . . , ~βn〉 be a basis for V , and consider the map RepB : V → Rn given by

RepB(~v) =


c1

c2

...
cn

 , ~v =
n∑

i=1

ci
~βi.
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The map is clearly linear. The map is one-to-one, for if RepB(~u) = RepB(~v) with ~u =
∑

i ci
~βi, ~v =

∑
i di

~βi,
then ci = di for all i, which implies that ~u = ~v. Finally, the map is clearly onto. Hence, RepB is an
isomorphism, so that V ∼= Rn.

Theorem 3.11. V ∼= W if and only if dim(V ) = dim(W ).

Corollary 3.12. If dim(V ) = k, then V ∼= Rk.

Example (cont.). (a) Since dim(Rm×n) = mn, Rm×n ∼= Rmn

(b) Since dim(Pn) = n + 1, Pn
∼= Rn+1

3.2. Homomorphisms

3.2.1. Definition

Definition 3.13. If h : V →W is linear, then it is a homomorphism.

Example. (a) The projection map π : R3 → R2 given by

π(

 x1

x2

x3

) =
(

x1

x2

)

is a homomorphism. However, it is not an isomorphism, as the map is not one-to-one, i.e., π(r~e3) = ~0
for any r ∈ R.

(b) The derivative map d/dx : Pn →Pn given by

d
dx

(a0 + a1x + · · ·+ anxn) = a1 + 2a2x + · · ·+ nanxn−1

is a homomorphism. However, it is not an isomorphism, as the map is not one-to-one, i.e., d/dx(a0) = 0
for any a0 ∈ R.

Definition 3.14. If h : V → V , then it is called a linear transformation.

Theorem 3.15. Let 〈~v1, . . . , ~vn〉 be a basis for V , and let {~w1, . . . , ~wn} ⊂ W be given. There exists a
unique homomorphism h : V →W such that h(~vj) = ~wj for j = 1, . . . , n.

Proof: Set h : V →W to be the map given by

h(c1~v1 + · · ·+ cn~vn) = c1 ~w1 + · · ·+ cn ~wn.
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The map is linear, for if ~u1 =
∑

i ci~vi, ~u2 =
∑

i di~vi, then

h(r1~u1 + r2~u2) = h

(∑
i

(r1ci + r2di)~vi

)
=
∑

i

(r1ci + r2di)~wi

= r1h(~u1) + r2h(~u2).

The map is unique, for if g : V →W is a homomorphism such that g(~vi) = ~wi, then

g(~v) = g(
∑

i

ci~vi) =
∑

i

cig(~vi) =
∑

i

ci ~wi = h(~v);

hence, g(~v) = h(~v) for all ~v ∈ V , so that they are the same map.

Example. (a) The rotation map tθ ; R2 → R2 is an automorphism which satisfies

tθ(~e1) =
(

cos θ
sin θ

)
, tθ(~e2) =

(
− sin θ

cos θ

)
.

One then has

tθ(~v) = v1

(
cos θ
sin θ

)
+ v2

(
− sin θ

cos θ

)
.

(b) Suppose that a homomorphism h : P2 →P3 satisfies

h(1) = x, h(x) =
1
2
x2, h(x2) =

1
3
x3.

Then
h(a0 + a1x + a2x

2) = a0x +
1
2
a1x

2 +
1
3
a2x

3.

The map is not an isomorphism, as it is not onto.

3.2.2. Rangespace and Nullspace

Definition 3.16. Let h : V →W be a homomorphism. The range space is given by

R(h) := {h(~v) : ~v ∈ V }.

The rank of h, rank(h), satisfies rank(h) = dim(R(h)).

Lemma 3.17. R(h) is a subspace.

Proof: Let ~w1, ~w2 ∈ R(h) be given. There then exists ~v1, ~v2 such that h(~vi) = ~wi. Since h(c1~v1 + c2~v2) ∈
R(h) and h(c1~v1 + c2~v2) = c1 ~w1 + c2 ~w2, one has that c1 ~w1 + c2 ~w2 ∈ R(h). Hence, it is a subspace.

Remark 3.18. (a) rank(h) ≤ dim(W )

(b) h is onto if and only if rank(h) = dim(W )
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Example. If h : R2×2 →P3 is given by

h(A) = (a + b)x + cx2 + dx3, A =
(

a b
c d

)
,

then a basis for R(h) is 〈x, x2, x3〉, so that that rank(h) = 3.

Definition 3.19. The inverse map h−1 : W → V is given by

h−1(~w) := {~v : h(~v) = ~w}.

Lemma 3.20. Let h : V →W be a homomorphism, and let S ⊂ R(h) be a subspace. Then

h−1(S) := {~v ∈ V : h(~v) ∈ S}

is a subspace. In particular, h−1(~0) is a subspace.

Definition 3.21. The null space (kernel) of the homomorphism h : V →W is given by

N (h) := {~v ∈ V : h(~v) = ~0} = h−1(~0).

The nullity of N (h) is dim(N (h)).

Example. Again consider the map h : R2×2 → P3. It is clear that h(A) = 0 if and only if a + b = 0, c =
d = 0, so that a basis for N (h) is given by

〈
(
−1 1

0 0

)
〉.

Note that for this example, rank(h) + dim(N (h)) = 4.

Theorem 3.22. Let h : V →W be a homomorphism. Then

rank(h) + dim(N (h)) = dim(V ).

Remark 3.23. Compare this result to that for matrices, where if A ∈ Rm×n, then

rank(A) + dim(N (A)) = n.

Proof: Let BN = 〈~β1, . . . , ~βk〉 be a basis for N (h), and extend that to a basis BV = 〈~β1, . . . , ~βk, ~v1, . . . , ~v`〉
for V , where k + ` = n. Set BR = 〈h(~v1), . . . , h(~v`)〉. We need to show that BR is a basis for R(h).

First consider ~0 =
∑

i cih(~vi) = h(
∑

i ci~vi). Thus,
∑

i ci~vi ∈ N (h), so that
∑

i ci~vi =
∑

i di
~βi. Since BV

is a basis, this yields that c1 = · · · = c` = d1 = · · · = dk = 0, so that BR is a linearly independent set.
Now suppose that h(~v) ∈ R(h). Since ~v =

∑
i ai

~βi +
∑

i bi~vi, upon using the fact that h is linear we get
that

h(~v) = h(
∑

i

ai
~βi) +

∑
i

bih(~vi)

= ~0 +
∑

i

bih(~vi).



29 Prof. Kapitula, Spring 2003

Hence, BR is a spanning set for R(h).
BN is a basis for N (h), and BR is a basis for R(h). The result is now clear.

Remark 3.24. (a) It is clear that rank(h) ≤ dim(V ), with equality if and only if dim(N (h)) = 0.

(b) If dim(W ) > dim(V ), then h cannot be onto, as rank(h) ≤ dim(V ) < dim(W ).

Lemma 3.25. Let h : V →W be a homomorphism. dim(N (h)) = 0 if and only if h is one-to-one.

Proof: If h is one-to-one, then the only solution to h(~v) = ~0 is ~v = ~0. Hence, dim(N (h)) = 0.
Now suppose that dim(N (h)) = 0. From the above lemma we have that if BV = 〈~v1, . . . , ~vn〉 is a

basis for V , then BR = 〈h(~v1), . . . , h(~vn)〉 is a basis for R(h). Suppose that there is a ~w ∈ W such that
h(~u1) = h(~u2) = ~w. We have that ~u1 =

∑
i ai~vi, ~u2 =

∑
i bi~vi, so that upon using the linearity of h,∑

i

aih(~vi) =
∑

i

bih(~vi).

Since BR is a basis, this implies that ai = bi for all i, so that ~u1 = ~u2. Hence, h is one-to-one.

Definition 3.26. A one-to-one homomorphism is nonsingular.

3.3. Computing Linear Maps

3.3.1. Representing Linear Maps with Matrices

Recall that if B = 〈~v1, . . . , ~vn〉 is a basis for V , then uniquely defined homomorphism h : V → W is
given by

h(~v) = h(
∑

i

ci~vi) :=
∑

i

cih(~vi),

i.e., the homomorphism is determined by its action on the basis.

Definition 3.27. Let A = (~a1 ~a2 · · · ~an) ∈ Rm×n, and let ~c ∈ Rn. The matrix-vector product is defined
by

A~c =
∑

i

ci~ai.

Remark 3.28. (a) Matrix multiplication is a homomorphism from Rn → Rm.

(b) A linear system can be written as A~x = ~b, where A is the coefficient matrix and ~x is the vector of
variables.

Example. Suppose that h : P1 → R3, and that

B = 〈2, 1 + 4x〉, D = 〈~e1,−2~e2, ~e1 + ~e3〉

are the bases for these spaces. Suppose that

h(2) =

 1
1
1

 , h(1 + 4x) =

 1
2
0

 .
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It is easy to check that

RepD(h(2)) =

 0
−1/2

1

 , RepD(h(1 + 4x)) =

 1
−1

0

 .

Thus, if p = c1 · 2 + c2 · (1 + 4x), i.e.,

RepB(p) =
(

c1

c2

)
,

and since h(p) = c1h(2) + c2h(1 + 4x), by using the fact that RepD is linear one gets that RepD(h(p)) =
c1 RepD(h(2)) + c2 RepD(h(1 + 4x)). If one defines the matrix

RepB,D(h) := (RepD(h(2)) RepD(h(1 + 4x))),

then one has that
RepD(h(p)) = RepB,D(h) RepB(p).

For example, if

RepB(p) =
(

1
−2

)
(=⇒ p(x) = −8x),

then

RepD(h(p)) =

 0 1
−1/2 −1

1 0

( 1
−2

)

=

 0
−1/2

1

− 2

 1
−1

0


=

 −2
3/2

1


so that

h(p) = −2

 1
0
0

− 3
2

 0
−2

0

+

 1
0
1


=

 −1
−5

1

 .

Definition 3.29. Let h : V → W be a homomorphism. Suppose that B = 〈~v1, . . . , ~vn〉 is a basis for
V , and D = 〈~w1, . . . , ~wm〉 is a basis for W . Set

~hj := RepD(h(~vj)), j = 1, . . . , n.

The matrix representation of h with respect to B,D is given by

RepB,D(h) := (~h1
~h2 · · · ~hn) ∈ Rm×n.

Lemma 3.30. Let h : V →W be a homomorphism. Then

RepD(h(~v)) = RepB,D(h) RepB(~v).
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Remark 3.31. As a consequence, all linear transformations can be thought of as a matrix multiplication.
Example. (a) Suppose that V = [ex, e3x], and that h : V → V is given by h(v) =

∫
v(x) dx. Since

h(ex) = ex, h(e3x) =
1
3
e3x,

we have

RepB,B(h) =
(

1 0
0 1/3

)
.

(b) Suppose that a basis for V is B = 〈~v1, ~v2, ~v3〉, and that a basis for W is D = 〈~w1, ~w2, ~w3〉. Further
suppose that

h(~v1) = ~w1 + 3~w2, h(~v2) = ~w2 − ~w3, h(~v3) = −~w1 + 4~w3.

We then have that

RepB,D(h) =

 1 0 −1
3 1 0
0 −1 4

 .

Thus, if ~v = 2~v1 − ~v2 + ~v3, we have that

RepD(h(~v)) = RepB,D(h) RepB(~v) =

 1
5
5

 ,

so that h(~v) = ~w1 + 5~w2 + 5~w3.

3.3.2. Any Matrix Represents a Linear Map

Example. Suppose that h : P2 → R3, with bases B = 〈1, x, x2〉 and D = 〈~e1, ~e2+~e3, ~e1−~e3〉, is represented
by the matrix

H =

 1 −1 0
0 1 1
2 −1 1

 .

In order to decide if ~b = ~e1 + 3~e2 ∈ R(h), it is equivalent to determine if RepD(~b) ∈ R(H). Since

RepD(~b) =

 −2
3
3

 ,

and

(H|~b) −→

 1 −1 0 −2
0 1 1 3
0 0 0 4


we have that RepD(~b) /∈ R(H); hence, ~b /∈ R(h). Note that rank(H) = 2, so that h is neither one-to-one nor
onto.

Let us find a basis for R(h) and N (h). We have

H −→

 1 0 1
0 1 1
0 0 0

 , HT −→

 1 0 2
0 1 1
0 0 0

 ,

so that

R(H) = [

 1
0
2

 ,

 0
1
1

], N (H) = [

 −1
−1

1

].
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Using the fact that ~b ∈ R(h) if and only if RepD(~b) ∈ R(H), and ~v ∈ N (h) if and only if RepB(~v) ∈ N (H),
then yields

R(h) = [

 3
0
−2

 ,

 1
1
0

], N (h) = [−1− x + x2].

Theorem 3.32. Let A ∈ Rm×n. The map h : Rn → Rm defined by h(~x) := A~x is a homomorphism.

Proof: Set A = (~a1 ~a2 . . . ~an), and recall that A~x =
∑

i xi~ai. Since

A(r~x + s~y) =
n∑

i=1

(rxi + syi)~ai = r
n∑

i=1

xi~ai + s
n∑

i=1

yi~ai = rA~x + sA~y,

h is a homomorphism.

Theorem 3.33. Let h : V → W be a homomorphism which is represented by the matrix H. Then
rank(h) = rank(H).

Proof: Let B = 〈~v1, . . . , ~vn〉 be a basis for V , and let W have a basis D, so that

H = (RepD(h(~v1)) . . . RepD(h(~vn))).

The rank of H is the number of linearly independent columns of H, and the rank of h is the number of linearly
independent vectors in the set {h(~v1), . . . , h(~vn)}. Since RepD : W → Rm is an isomorphism, we have that a
set in R(h) is linearly independent if and only if the related set in R(RepD(h)) is linearly independent (prob-
lem 3.1.1.28), i.e., {h(~v1), . . . , h(~vk)} is linearly independent if and only if {RepD(h(~v1)), . . . ,RepD(h(~vk))}
is linearly independent. The conclusion now follows.

Corollary 3.34. (a) h is onto if and only if rank(h) = m

(b) h is one-to-one if and only if rank(h) = n

(c) h is nonsingular if and only if m = n and rank(h) = n

3.4. Matrix Operations

3.4.1. Sums and Scalar Products

Definition 3.35. Let A = (ai,j), B = (bi,j) ∈ Rm×n. Then

(a) A + B = (ai,j + bi,j)

(b) rA = (rai,j) for any r ∈ R.
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Lemma 3.36. Let g, h : V → W be homomorphisms represented with respect to the bases B and D
by the matrices G, H. The map g + h is represented by G + H, and the map rh is represented by rH.

3.4.2. Matrix Multiplication

Definition 3.37. Let G ∈ Rm×n and H = (~h1
~h2 · · · ~hp) ∈ Rn×p. Then

GH = (G~h1 G~h2 · · · G~hp) ∈ Rm×p.

Example. It is easy to check that 1 1
2 −1
3 −2

( −1 2
1 3

)
=

 0 5
−3 1
−5 0

 .

Remark 3.38. Matrix multiplication is generally not commutative. For example:

(a) if A ∈ R2×3 and B ∈ R3×2, then AB ∈ R2×2 while BA ∈ R3×3

(b) if

A =
(

1 −1
2 0

)
, B =

(
5 2
4 4

)
,

then

AB =
(

1 −2
10 4

)
, BA =

(
9 −5
12 −4

)
.

Lemma 3.39. Let g : V →W and h : W → U be homomorphisms represented by the matrices G, H.
The map h ◦ g : V → U is represented by the matrix HG.

Proof: Give the commutative diagram:

VB
g−−−−→ WD

h−−−−→ UE

RepB

y RepD

y yRepE

Rn −−−−→
G

Rm −−−−→
H

Rp

Example. Consider the maps tθ, dr : R2 → R2 given by

tθ(~v) :=
(

cos θ v1 − sin θ v2

sin θ v1 + cos θ v2

)
, dr(~v) :=

(
3v1

v2

)
.

The matrix representations for these maps are

Tθ :=
(

cos θ − sin θ
sin θ cos θ

)
, Dr :=

(
3 0
0 1

)
.



Math 321 Class Notes 34

Rotation followed by dilation is represented by the matrix

DrTθ =
(

3 cos θ −3 sin θ
sin θ cos θ

)
,

while dilation followed by rotation is represented by the matrix

TθDr =
(

3 cos θ − sin θ
3 sin θ cos θ

)
.

3.4.3. Mechanics of Matrix Multiplication

Definition 3.40. The identity matrix is given by I = (~e1 ~e2 · · · ~en) ∈ Rn×n.

Remark 3.41. Assuming that the multiplication makes sense, I~v = ~v for any vector ~v ∈ Rn, and conse-
quently AI = A, IB = B.

Definition 3.42. A diagonal matrix D = (di,j) ∈ Rn×n is such that di,j = 0 for i 6= j.

Definition 3.43. An elementary reduction matrix R ∈ Rn×n is formed by applying a single row oper-
ation to the identity matrix.

Example. Two examples are

I
−2ρ1+ρ2−→

 1 0 0
−2 1 0

0 0 1

 , I
ρ1↔ρ2−→

 0 1 0
1 0 0
0 0 1

 .

Lemma 3.44. Let R be an elementary reduction matrix. Then RH is equivalent to performing the
Gaussian operation on the matrix H.

Corollary 3.45. For any matrix H there are elementary reduction matrices R1, . . . , Rk such that
RkRk1 · · ·R1H is in reduced echelon form.

3.4.4. Inverses

Definition 3.46. Suppose that A ∈ Rn×n. The matrix is invertible if there is a matrix A−1 such that
AA−1 = A−1A = I.
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Remark 3.47. If it exists, the matrix A−1 is given by the product of elementary reduction matrices. For
example,

A =
(

1 1
2 −1

)
−2ρ1+ρ2−→

(
1 1
0 −3

)
−1/3ρ2−→

(
1 1
0 1

)
−ρ2+ρ1−→ I.

Thus, by setting

R1 =
(

1 0
−2 1

)
, R2 =

(
1 0
0 −1/3

)
, R3 =

(
1 −1
0 1

)
,

we have that R3R2R1A = I, so that A−1 = R3R2R1.

Lemma 3.48. A is invertible if and only if it is nonsingular, i.e., the linear map defined by h(~x) := A~x
is an isomorphism.

Proof: A can be row-reduced to I if and only if h is an isomorphism.

Remark 3.49. When computing A−1, do the reduction (A|I)→ (I|A−1) (if possible).
Example. (a) For A given above,

(A|I)→
(

1 0 1/3 1/3
0 1 2/3 −1/3

)
.

(b) For a general A ∈ R2×2 we have that(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
,

if ad− bc 6= 0.

3.5. Change of Basis

3.5.1. Changing Representations of Vectors

For the vector space V let one basis be given by B = 〈~β1, . . . , ~βn〉, and let another be given by D =
〈~δ1, . . . , ~δn〉. Define the homomorphism h : V → V by h(~βj) := ~βj , i.e., h = id, the identity map. The
transformation matrix H associated with the identity map satisfies ~hj = RepD(~βj).

Definition 3.50. The change of basis matrix H = RepB,D(id) for the bases B,D is the representation
of the identity map with respect to these bases, and satisfies ~hj = RepD(~βj).

Example. Suppose that

B = 〈
(

1
1

)
,

(
1
2

)
〉, D = 〈

(
2
1

)
,

(
1
−1

)
〉.

We have that
VB

id−−−−→ VD

RepB

y RepD

y
R2 −−−−−−−→

H=RepB,D

R2
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It can be checked that

RepD(
(

1
1

)
) =

(
2/3
−1/3

)
, RepD(

(
1
2

)
) =

(
1
−1

)
,

so that the change of basis matrix is

H =
(

2/3 1
−1/3 −1

)
.

Recall that H RepB(~v) = RepD(~v). For the vector ~v = (−1,−3)T one has that RepB(~v) = (1,−2)T , so that

RepD(~v) = H RepB(~v) =
1
3

(
−4

5

)
.

What about the change of basis matrix from D to B? It must be H−1 (use a commutative diagram to
show it).
Example (cont.). The change of basis matrix from D to B is

H−1 =
(

3 3
−1 −2

)
.

Note that this implies that

RepB(
(

2
1

)
) =

(
3
−1

)
, RepB(

(
1
−1

)
) =

(
3
−2

)
.

3.5.2. Changing Map Representations

Consider the homomorphism h : V →W , and suppose that V has bases B, B̂, while W has bases D, D̂.
With respect to B,D there is a transformation matrix H, while with respect to B̂, D̂ there is a transformation
matrix Ĥ, i.e.,

VB
h−−−−→
H

WD

id

y yid

VB̂

h−−−−→
Ĥ

WD̂

We have that

Ĥ = RepD,D̂(id) ·H · RepB̂,B(id)

= RepD,D̂(id) ·H · RepB,B̂(id)−1

= Rep−1

D̂,D
(id) ·H · RepB̂,B(id).

The idea is that, if possible, we wish to choose bases B̂, D̂ such that h(~βj) = aj
~δj for some aj ∈ R.

Definition 3.51. H, Ĥ ∈ Rm×n are matrix equivalent if there are nonsingular matrices P,Q such that
Ĥ = PHQ.

Lemma 3.52. Matrix equivalent matrices represent the same map with respect to appropriate pairs of
bases.
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Example. In the standard basis E2 consider the homomorphism

h(~x) =
(

4 −2
1 1

)
~x, H =

(
4 −2
1 1

)
.

Consider the basis

D = 〈
(

1
1

)
,

(
2
1

)
〉.

We have that

RepD,E2
(id) =

(
1 2
1 1

)
,

so that

Ĥ = RepD,E2
(id)−1H RepD,E2

(id) =
(

2 0
0 3

)
;

hence, the homomorphism has the desired property with the basis D, i.e.,

h(
(

1
1

)
) = 2

(
1
1

)
, h(

(
2
1

)
) = 3

(
2
1

)
.

Remark 3.53. The above example does not really change if, with respect to the standard basis B = 〈1, x〉,
the homomorphism h : P2 →P2 satisfies h(1) = 4 + x, h(x) = −2 + x, so that the matrix representing the
homomorphism is that given above. If we set D = 〈1 + x, 2 + x〉, then one then has that

h(1 + x) = 2(1 + x), h(2 + x) = 3(2 + x).

3.6. Projection

3.6.1. Orthogonal Projection into a Line

Let the line ` be given by ` := [~s], and let ~v ∈ Rn be a given vector. The orthogonal projection of ~v onto
` is given by ~v~p = c~p~s, where c~p is chosen so that

~v = (~v − c~p~s) + c~p~s, (~v − c~p~s) · ~s = 0

(give a picture). Note that the second condition implies that ~v− c~p~s ∈ `⊥. The second condition yields that

c~p =
~v · ~s
~s · ~s

.

Definition 3.54. The orthogonal projection of ~v onto the line spanned by ~s is the vector

proj[~s](~v) =
~v · ~s
~s · ~s

~s.

Remark 3.55. (a) By construction, ~v − proj[~s](~v) ∈ [~s]⊥.

(b) Since proj[~s] : Rn → Rn is a homomorphism, it is represented by a matrix P[~s], which is given by

P[~s] :=
1

~s · ~s
(s1~s, s2~s, . . . , sn~s)

= (~s)(
s1

~s · ~s
, . . . ,

sn

~s · ~s
).

Note that rank(P[~s]) = 1, and hence dim(N (P[~s])) = n− 1. Further note that [~s]⊥ = N (P[~s]).
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Example. Suppose that

~v =

 1
1
4

 , ~s =

 1
2
−1

 .

Then

proj[~s](~v) = −1
6
~s.

3.6.2. Gram-Schmidt Orthogonalization

Definition 3.56. The vectors ~v1, . . . , ~vk ∈ Rn are mutually orthogonal if ~vi · ~vj = 0 for any i 6= j.

Theorem 3.57. Suppose that the nonzero vectors ~v1, . . . , ~vk ∈ Rn are mutually orthogonal. The set
{~v1, . . . , ~vk} is then linearly independent.

Proof: Suppose that
∑

i ci~vi = ~0. For each j take the dot product with ~vj , so that

~vj ·~0 = ~vj · (
∑

i

ci~vi) =
∑

i

ci(~vj · ~vi) = cj~vj · ~vj .

Since the vectors are nonzero, this implies that cj = 0. Hence, the vectors are linearly independent.

Corollary 3.58. The set {~v1, . . . , ~vk} is a basis.

Definition 3.59. The basis given above is an orthogonal basis.

Recall that if ~v ∈ Rn, then ‖~v‖2 = ~v · ~v.

Lemma 3.60. Suppose that B = 〈~κ1, . . . , ~κ`〉 is an orthogonal basis for the subspace S ⊂ Rn . If
~v =

∑
i ci~κi ∈ S, then

(a) ci =
~v · ~κi

~κi · ~κi

(b) ‖~v‖2 =
∑̀
i=1

c2
i~κi · ~κi.

Proof: Follows immediately from the fact that B is an orthogonal basis. For part (a) consider ~v · ~κi, and
for part (b) simply look at ~v · ~v.
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Lemma 3.61. Let 〈~κ1, . . . , ~κ`〉 be an orthogonal basis for a subspace S. For a given ~v set

~p =
∑

i

ci~κi, ci =
~v · ~κi

~κi · ~κi
.

Then ~p− ~v ∈ S⊥.

Proof: First note that

~κj · (~p− ~v) = ~κj · ~p− ~κj · ~v

= ~κj · (
∑

i

ci~κi)− cj~κj · ~κj

= (
∑

i

ci~κj · ~κi)− cj~κj · ~κj

= cj~κj · ~κj − cj~κj · ~κj

= 0,

so that ~p−~v is orthogonal to each ~κj . If ~x ∈ S, so that ~x =
∑

i di~κi, by using the linearity of the dot product
it is clear that (~p− ~v) · ~x = 0. Hence, ~p− ~v ∈ S⊥.

Definition 3.62. Define the homomorphism projS : Rn → Rn by

projS(~v) =
∑

i

proj[~κi](~v).

Remark 3.63. From the above one has that ~v − projS(~v) ∈ S⊥. The matrix representation for projS , PS ,
is given by

PS =
∑

i

P[~κi].

Since 〈~κ1, . . . , ~κ`〉 is an orthogonal basis, one has that rank(PS) = `, and hence that dim(S⊥) = dim(N (PS)) =
n− `.

Recall that if S = [~β1, . . . , ~βk], then a basis for S is not at all unique. The question is how to find an
orthogonal basis for S. For example, suppose that

S = [

 1
1
1

 ,

 1
2
3

 ,

 5
6
7

].

Keep in mind that dim(S) ≤ 3. Set

~κ1 =

 1
1
1

 .

Define ~κ2 by

~κ2 =

 1
2
3

− proj[~κ1](

 1
2
3

) =

 −1
0
1

 .



Math 321 Class Notes 40

If S = [~κ1, ~κ2], now define

~κ3 =

 5
6
7

− projS(

 5
6
7

)

=

 5
6
7

− proj[~κ1](

 5
6
7

)− proj[~κ2](

 5
6
7

)

= ~0.

An orthogonal basis for S is then

〈

 1
1
1

 ,

 −1
0
1

〉,
so that dim(S) = 2.

Theorem 3.64 (Gram-Schmidt orthogonalization). Suppose that S = [~β1, . . . , ~βk]. An orthogonal basis
for S is constructed via

~κ1 = ~β1

~κ`+1 = ~β`+1 − projS`
(~β`+1),

where S` = [~κ1, . . . , ~κ`].

Remark 3.65. The procedure can alternatively be written as

~κ1 = ~β1

~κ2 = ~β2 − proj[~κ1](~β2)

~κ3 = ~β3 − proj[~κ1](~β3)− proj[~κ2](~β3)

...

~κk = ~βk − proj[~κ1](~βk)− · · · − proj[~κk−1]
(~βk).

Proof: The argument will be by induction. It is clear that [~κ1] = [~β1]. Define S` = [~κ1, . . . , ~κ`]. Suppose
that for some 1 < ` < k that S` = [~β1, . . . , ~β`]. Set

~p` = projS`
(~β`+1) = proj[~κ1](~β`+1) + · · ·+ proj[~κ`]

(~β`+1).

It is clear that ~p` ∈ S`. By supposition, ~κ`+1 = ~β`+1 − ~p ∈ [~β1, . . . , ~β`+1]. Since ~p ∈ S`, it is clear that
~β`+1 = ~p + ~κ`+1 ∈ S`+1. Thus, S`+1 = [~β1, . . . , ~β`+1]. From the above lemma ~κ`+1 = ~β`+1 − ~p ∈ S⊥` , so that
the basis for S`+1 is orthogonal. It then follows that an orthogonal basis for S is given by 〈~κ1, . . . , ~κk〉.

3.6.3. Projection into a Subspace

Let a basis (not necessarily orthogonal) for a subspace M be given by 〈~v1, . . . , ~v`〉. Given a ~b ∈ Rn, one
could compute projM (~b) by first using the Gram-Schmidt procedure to get an orthogonal basis for M , and
then using the projection formula. However, that is a lengthy process. Let us try another approach. Set
A = (~v1 ~v2 · · · ~v`) ∈ Rn×`. Since projM (~b) ∈ M , by definition projM (~b) ∈ R(A), i.e., there is an ~x∗ such
that A~x∗ = projM (~b). Recall that the projection also satisfies ~b− projM (~b) = ~b− A~x∗ ∈ R(A)⊥ = N (AT ).
Thus, AT (~b−A~x∗) = ~0, so that the vector ~x∗ is given as the solution to AT A~x = AT~b.
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Is the vector ~x∗ unique? We must show that given rank(A) = `, then dim(N (AT A)) = 0. If ~x ∈ N (A), it
is clear that ~x ∈ N (AT A); hence, N (A) ⊂ N (AT A). Now suppose that ~x ∈ N (AT A). This clearly implies
that A~x ∈ N (AT ). It is equally clear that A~x ∈ R(A). Since R(A)⊥ = N (AT ), this necessarily implies that
A~x = ~0, i.e., ~x ∈ N (A). Hence, N (AT A) ⊂ N (A), so that N (A) = N (AT A). Since rank(A) = ` implies
that dim(N (A)) = 0, one then gets that dim(N (AT A)) = 0. Thus, ~x∗ is unique.

Lemma 3.66. For a given A ∈ Rn×` with rank(A) = `, and for a given ~b ∈ Rn, the projection of ~b onto

R(A) is given by A~x∗, where ~x∗ is the unique solution to the system AT A~x = AT~b.

Definition 3.67. The least-squares solution of A~x = ~b is the solution to AT A~x = AT~b.

Remark 3.68. (a) By construction, the least-squares solution satisfies ‖A~x∗−~b‖ ≤ ‖A~x−~b‖ for any ~x 6= ~x∗.

(b) If ~b ∈ R(A), then the least-squares solution is the true solution.

Topic: Line of Best Fit

Suppose that you have a collection of point (x1, y1), . . . , (xn, yn) that you wish to fit with a curve of the
form

y = c0f0(x) + c1f1(x) + · · ·+ ckfk(x).

If the points were to lie exactly on the proposed curve, then the following system of equations would be
satisfied:

yj = c0f0(xj) + c1f1(xj) + · · ·+ ckfk(xj), j = 1, . . . , n,

i.e.,

A~c = ~y, A =

f0(x1) · · · fk(x1)
...

...
f0(xn) · · · fk(xn)

 .

It is highly unlikely, however, that the points will lie exactly on the proposed curve. The curve of best fit
would be given by choosing the vector ~c so that ‖A~c− ~y‖ is as small as possible. The vector ~c is the solution
to the least-squares problem AT A~c = AT ~y.

For the first example, suppose that you wish to fit the data (1, 0), (2, 1), (4, 2), (5, 3) with a line. One
then gets that

A =


1 1
1 2
1 4
1 5

 , ~y =


0
1
2
3

 .

The least-squares solution is ~c = (−3/5, 7/10)T , so that the line of best fit is

y = −3
5

+
7
10

x.

Now consider the following example. Among the important inputs in weather forecasting models are
data sets consisting of temperature values at various parts of the atmosphere. These are either measured
directly using weather balloons or inferred from remote soundings taken by weather satellites. A typical set
of RAOB (weather balloon) data is given below:

p 1 2 3 4 5 6 7 8 9 10
T 222 227 223 233 244 253 260 266 270 266
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The temperature T in kelvins may be considered as a function of p, the atmospheric pressure measured in
decibars. Pressures in the range from 1 to 3 decibars correspond to the top of the atmosphere, and those in
the range from 9 to 10 correspond to the lower part of the atmosphere. The linear and cubic least-squares
fits are given below.
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0 2 4 6 8 10
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Figure 1: Comparison of a linear fit with a cubic fit for the temperature vs. pressure data.
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4. Determinants

4.1. Definition

4.1.1. Exploration

Consider the matrix A ∈ R2×2 given by

A =
(

a b
c d

)
.

It is known that A is nonsingular if and only if ad− bc 6= 0.

Definition 4.1. If A ∈ R2×2, define the determinant of A to be

det(A) = ad− bc.

Remark 4.2. Often one writes |A| := det(A).
The following properties are easy to verify:

(a) det(AT ) = det(A)

(b) det(AB) = det(A) det(B).

Recall that Gaussian elimination is equivalent to multiplication by one or more elementary reduction
matrices. Using this fact and the above properties yields the further properties:

(a) if

Â =
(

0 1
1 0

)
A,

then det(Â) = −det(A)

(b) if

Â =
(

r 0
0 1

)
A,

then det(Â) = r det(A)

(c) if

Â =
(

1 0
r 1

)
A,

then det(Â) = det(A)

4.1.2. Properties of Determinants

Let
A = (~ρ1, ~ρ2, . . . , ~ρn) ∈ Rn×n,

where ~ρj represents row j of A.
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Definition 4.3. A determinant is a function det : Rn×n → R such that

(a) det(~ρ1, . . . , r~ρi + ~ρj , . . . , ~ρn) = det(~ρ1, . . . , ~ρj , . . . , ~ρn) for i 6= j

(b) det(~ρ1, . . . , ~ρi, . . . , ~ρj , . . . , ~ρn) = −det(~ρ1, . . . , ~ρj , . . . , ~ρi, . . . , ~ρn) for i 6= j

(c) det(~ρ1, . . . , r~ρi, . . . , ~ρn) = r det(~ρ1, . . . , ~ρi, . . . , ~ρn)

(d) det(I) = 1, where I ∈ Rn×n is the identity matrix

Lemma 4.4. The determinant satisfies the following properties:

(a) if A has two identical rows, then det(A) = 0

(b) if A has a zero row, then det(A) = 0

(c) A is nonsingular if and only if det(A) 6= 0

(d) if A is in echelon form, then det(A) is the product of the diagonal entries.

Proof: First suppose that A has two equal rows. Using property (b) yields that det(A) = −det(A), so that
det(A) = 0.

Now suppose that A has a zero row. Using property (a) gives

det(. . . , ~ρi, . . . ,~0, . . . ) = det(. . . , ~ρi, . . . , ~ρi +~0, . . . ).

The matrix on the right has two identical rows, so the above result gives that det(A) = 0.
Let Â be the Gauss-Jordan reduction of A. As an application of the first three properties one has that

det(A) = α det(Â), where α is some nonzero constant. If A is nonsingular, Â = I, so that by property (d)
det(Â) = 1, and hence det(A) = α 6= 0. If A is singular, then Â has at least one zero row, so by the above
result det(Â) = 0, and hence det(A) = 0.

Finally, suppose that A is in echelon form. If one of the diagonal entries is zero, then in reduced echelon
form the matrix will have a zero row, and hence det(A) = 0. This is exactly the product of the diagonal
entries. Suppose that none of the diagonal entries is zero, i.e., ai,i 6= 0 for i = 1, . . . , n. Upon using property
(c) and factoring ai,i from row i one has that

det(A) = a1,1a2,2 · · · an,n det(Â),

where Â is such that âi,i = 1 for i = 1, . . . , n. The matrix Â can clearly be row-reduced to I; furthermore,
this reduction only requires property (a), so that det(Â) = det(I) = 1. This yields the desired result.

Example. The above result gives us an indication as to how to calculate det(A) if n ≥ 3. Simply row-reduce
A to echelon form keeping track of the row-swapping and row multiplication, and then use result (d) from
the above. For example,∣∣∣∣∣∣

1 2 3/2
−3 4 −2

1 0 −2

∣∣∣∣∣∣ = 1
2

∣∣∣∣∣∣
2 4 3
−3 4 −2

1 0 −2

∣∣∣∣∣∣ = −1
2

∣∣∣∣∣∣
1 0 −2
−3 4 −2

2 4 3

∣∣∣∣∣∣
= −1

2

∣∣∣∣∣∣
1 0 −2
0 4 −8
0 4 7

∣∣∣∣∣∣ = −1
2

∣∣∣∣∣∣
1 0 −2
0 4 −8
0 0 15

∣∣∣∣∣∣ = −30.
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Lemma 4.5. The determinant has the following properties:

(a) det(AT ) = det(A)

(b) det(AB) = det(A) det(B)

(c) if A is nonsingular, then det(A−1) = det(A)−1.

4.3. Other Formulas

4.3.1. Laplace’s Expansion

Definition 4.6. For a given A ∈ Rn×n, let Ai,j ∈ R(n−1)×(n−1) be the matrix formed by deleting
row i and column j from A. The matrix Ai,j is the i, j minor of A. The i, j cofactor is given by
(−1)i+j det(Ai,j).

Example. If

A =

1 2 3
4 5 6
7 8 9

 ,

then

A1,2 =
(

4 6
7 9

)
, A2,3 =

(
1 2
7 8

)

Theorem 4.7 (Laplace Expansion of Determinants). If A ∈ Rn×n, then

det(A) =
n∑

k=1

(−1)i+kai,k det(Ai,k) (across row i)

=
n∑

k=1

(−1)k+jak,j det(Ak,j) (down column j).

Example. One has that∣∣∣∣∣∣
1 0 −5
2 1 3
−3 0 6

∣∣∣∣∣∣ = (−1)1+2 · 0 ·
∣∣∣∣ 2 3
−3 6

∣∣∣∣+ (−1)2+2 · 1 ·
∣∣∣∣ 1 −5
−3 6

∣∣∣∣+ (−1)3+2 · 0 ·
∣∣∣∣ 1 −5

2 3

∣∣∣∣
= −0 · (21) + 1 · (−9)− 0 · (13) = −9.

Topic: Cramer’s Rule

Consider the linear system A~x = ~b, where A ∈ Rn×n is such that det(A) 6= 0. Since A is nonsingular, the
solution is given by ~x = A−1~b. Let Bj ∈ Rn×n be the matrix formed by substituting ~b into column j of A.



Math 321 Class Notes 46

Theorem 4.8 (Cramer’s Rule). The solution vector ~x is given by

xj =
det(Bj)
det(A)

.

Example. If

A =

 2 1 1
3 0 1
1 −1 −1

 , ~b =

 1
4
2

 ,

then for the system A~x = ~b one has that

B3 =

 2 1 1
3 0 4
1 −1 2

 .

Hence,

x3 =
det(Bj)
det(A)

=
3
3

= 1.
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5. Similarity

5.2. Similarity

5.2.1. Definition and Examples

Example. Consider the following table:

Married Single
0.85 0.10 Married
0.15 0.90 Single

Set ~xj = (mj , sj)T , where mj represents the number of married men in year j , and sj is the number of
single men in year j. The above table gives the percentage of married men who will stay married, etc. If

A =
(

0.85 0.10
0.15 0.90

)
,

we have the relationship ~xn+1 = A~xn. This is a dynamical system. Since

~x1 = A~x0, ~x2 = A~x1 = A2~x0, . . . , ~xn = A~xn−1 = An~x0,

if we wish to understand the final distribution of married men vs. single men, we need to understand
limn→∞An. How do we accomplish this task without actually doing the multiplication?

Recall that two matrices H and Ĥ are equivalent if Ĥ = PHQ. From the commutative diagram

VB
h−−−−→
H

WD

id

y yid

VB̂

h−−−−→
Ĥ

WD̂

we have that

Ĥ = RepD,D̂(id) ·H · RepB̂,B(id)

= RepD,D̂(id) ·H · RepB,B̂(id)−1.

If we restrict ourselves to the following situation,

VB
h−−−−→
H

VB

id

y yid

VD
h−−−−→
Ĥ

VD

we have that
Ĥ = RepB,D(id) ·H · RepB,D(id)−1.

Definition 5.1. The matrices T and S are similar if there is a nonsingular matrix P such that T =
PSP−1.

Remark 5.2. (a) The above can be rewritten as TP = PS, which, as we will see, allows us to choose the
optimal P .
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(b) Two matrices are also similar if QTQ−1 = S, as Q = P−1.

Example. Consider the matrices

A =
(

4 −2
1 1

)
, P =

(
1 2
1 1

)
.

It is easy to check that

P−1AP =
(

2 0
0 3

)
.

Proposition 5.3. Suppose that T = PSP−1. Then det(T ) = det(S).

Proof: Recall that det(AB) = det(A) det(B), and that det(A−1) = det(A)−1. Using these properties

det(T ) = det(P ) det(S) det(P−1) = det(S) det(P )
1

det(P )
= det(S).

Proposition 5.4. Suppose that T = PSP−1, and further suppose that S is nonsingular. Then T is
nonsingular.

Proof: From the above det(T ) = det(S). If S is nonsingular, then det(T ) = det(S) 6= 0, so that T is
nonsingular.

Proposition 5.5. If T is similar to S, i.e., T = PSP−1. Then T k is similar to Sk for any k ≥ 1.
Furthermore, T k = PSkP−1.

Proof: Homework problem.

5.2.2. Diagonalizability

Definition 5.6. A homomorphism h : V → V is diagonalizable if there is a basis 〈~β1, . . . , ~βn〉 for V

such that h(~βi) = λi
~βi for i = 1, . . . , n. A diagonalizable matrix is one that is similar to a diagonal

matrix.

Example. We have already seen that the following are similar;

A =
(

4 −2
1 1

)
, D =

(
2 0
0 3

)
.

Hence, A is diagonalizable.

Remark 5.7. Not every matrix is diagonalizable. If D = diag(λ1, . . . , λn) is a diagonal matrix, then it is
easy to check that Dk = diag(λk

1 , . . . , λk
n) for each k ≥ 1. If A is similar to D, then we know that Ak is

similar to Dk. Consider

A =
(

0 1
0 0

)
=⇒ A2 =

(
0 0
0 0

)
.
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A clearly cannot be similar to the zero matrix, for this would imply that A = 0. Since det(A) = 0, det(D) = 0,
so that we can assume that D = diag(λ, 0). If

P =
(

a b
c d

)
is invertible, it is easy to check that

PD2P−1 =
λ2

det(P )

(
ad −ab
cd −bc

)
.

In order to get the zero matrix, we need ad = bc = 0, which would require that det(P ) = 0. Hence, no such
P exists, so that A is not diagonalizable.

5.2.3. Eigenvalues and Eigenvectors

Definition 5.8. A homomorphism h : V → V has a scalar eigenvalue λ ∈ C if there is a nonzero
eigenvector ~ζ ∈ V such that h(~ζ) = λ~ζ.

Example. Consider the homomorphism h : P1 →P1 given by

h(c0 + c1x) = (4c0 − 2c1) + (c0 + c1)x.

We wish to solve h(p(x)) = λp(x). With respect to the standard basis this can be rewritten as H~ζ = λ~ζ,
where

H = RepE2,E2
(h) =

(
4 −2
1 1

)
, ~ζ = RepE2

(p).

The system can again be rewritten as (H − λI)~ζ = ~0. In other words, we need ~ζ ∈ N (H − λI). In order for
dim(N (H − λI)) ≥ 1, we need det(H − λI) = 0. Thus, to find the eigenvalues we must solve

det(H − λI) = λ2 − 5λ + 6 = (λ− 2)(λ− 3) = 0.

For λ = 2 one has ~ζ = (1, 1)T , and for λ = 3 one has ~ζ = (2, 1)T . Thus, the eigenvalues for h are λ = 2, 3,
and the associated eigenvectors are p(x) = 1 + x, 2 + x.

If B = 〈1 + x, 2 + x〉, then

H = RepB,B(h) =
(

2 0
0 3

)
,

i.e., h(c1(1 + x) + c2(2 + x)) = 2c1(1 + x) + 3c2(2 + x).

Definition 5.9. If H ∈ Rn×n, then H has an eigenvalue λ with associated nonzero eigenvector ~ζ if
H~ζ = λ~ζ.

Definition 5.10. The eigenspace of the homomorphism h associated with the eigenvalue λ is

Vλ := {~ζ : h(~ζ) = λ~ζ}.
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Lemma 5.11. The eigenspace Vλ is a subspace.

Proof: Just check that h(c1
~ζ1 + c2

~ζ2) = λ(c1
~ζ1 + c2

~ζ2), so that ~ζ1, ~ζ2 ∈ Vλ implies that c1
~ζ1 + c2

~ζ2 ∈ Vλ.

Definition 5.12. The characteristic polynomial of H ∈ Rn×n is given by

p(x) := det(H − xI).

The characteristic equation is p(x) = 0. The characteristic polynomial of a homomorphism h is the
characteristic polynomial of any RepB,B(h).

Remark 5.13. p(x) is a polynomial of degree n. As a consequence, there will be n eigenvalues (counting
multiplicity).

Lemma 5.14. The characteristic polynomial of h is independent of the basis B.

Proof: If HB and HD are representations of h with respect to the bases B and D, there is a nonsingular P
such that HB = PHDP−1. Noting that

PHDP−1 − xI = P (HD − xI)P−1

yields that

det(HB − xI) = det(PHDP−1 − xI) = det(P ) det(HD − xI) det(P−1) = det(HD − xI).

Lemma 5.15. Let H ∈ Rn×n be given, and let λ1, . . . , λ` be distinct eigenvalues. If ~ζj ∈ Vλj
for

j = 1, . . . , `, then the set {~ζ1, . . . , ~ζ`} is linearly independent.

Proof: Proof by induction. The statement is clearly true if ` = 1. Assume that it is true for some value
1 < k < `, so that the set {~ζ1, . . . , ~ζk} is linearly independent. Now consider

c1
~ζ1 + · · ·+ ck

~ζk + ck+1
~ζk+1 = ~0.

Multiplying both sides by λk+1 yields

c1λk+1
~ζ1 + · · ·+ ckλk+1

~ζk + ck+1λk+1
~ζk+1 = ~0,

and multiplying both sides by H and using the fact that H~ζj = λj
~ζj yields

c1λ1
~ζ1 + · · ·+ ck

~ζk
~ζk + ck+1λk+1

~ζk+1 = ~0.

Subtracting the first from the second gives

c1(λ1 − λk+1)~ζ1 + · · ·+ ck(λk − λk+1)~ζk = ~0.

Since the eigenvalues are distinct, this implies that c1 = · · · = ck = 0. Since ~ζk+1 6= ~0, this further implies
that ck+1 = 0. Hence, the set {~ζ1, . . . , ~ζk, ~ζk+1} is linearly independent.
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Corollary 5.16. Let H ∈ Rn×n be given, and let λ1, . . . , λn be distinct eigenvalues. The set {~ζ1, . . . , ~ζn}
is a basis.

Corollary 5.17. Suppose that H ∈ Rn×n has n distinct eigenvalues. H is diagonalizable.

Proof: Suppose that H~ζj = λj
~ζj for j = 1, . . . , n. As a consequence of the above lemma, the matrix

P = (~ζ1, ~ζ2, . . . , ~ζn) is nonsingular. Setting D = diag(λ1, . . . , λn), it is easy to check that HP = PD; hence,
P−1HP = D.

Remark 5.18. (a) The statement can be relaxed to say that if there are n linearly independent eigenvectors,
then H is diagonalizable.

(b) The matrix P depends on the ordering of the eigenvalues.

Example. Suppose that (
4 −2
1 1

)
.

If

P =
(

1 2
1 1

)
,

then D = diag(2, 3), while if

P =
(

2 1
1 1

)
,

then D = diag(3, 2)

Topic: Stable Populations

Consider the example at the beginning of this chapter. Setting

~ζ1 =
(

2
3

)
, ~ζ2 =

(
−1

1

)
,

we have that with the basis B = 〈~ζ1, ~ζ2〉 the homomorphism h(~x) = A~x is represented by the matrix
D = diag(1, 3/4). Thus, with the basis B we have that dynamical system becomes ~yn+1 = D~yn, where
~y = RepB(~x). If ~y0 = (a, b)T , the solution is

(~yn)1 = a, (~yn)2 =
(

3
4

)n

b,

so that as n → ∞ we have that ~yn → (a, 0)T . For example, suppose that ~x0 = (14, 36)T = 10~ζ1 + 6~ζ2, so
that ~y0 = (10, 6)T . We have that limn→∞ ~yn = (10, 0), so that limn→∞ ~xn = 10~ζ1 = (20, 30)T .

Remark 5.19. The fact that λ = 1 is an eigenvalue is not a coincidence. Problems 5.2.3.33 and 5.2.3.42
discuss this issue in more detail.
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Topic: Method of Powers

For many applications it is important to find only the largest eigenvalue of the matrix H ∈ Rn×n.
Why? As in the previous example, consider dynamical system ~xn+1 = H~xn. Suppose that H has n distinct
eigenvalues λ1, . . . , λn with associated eigenvectors ~ζ1, . . . , ~ζn. Since 〈~ζ1, . . . , ~ζn〉 is a basis, we can write
~v
∑

i ci
~ζi. Using linearity we see that

H~v =
∑

i

ciλi
~ζi

H2~v =
∑

i

ciλ
2
i
~ζi

...

H`~v =
∑

i

ciλ
`
i
~ζi.

If one of the eigenvalues, say λ1, is such that |λk| < |λ1| for k = 2, . . . , n, then as ` becomes large the
dominant behavior will be H`~v ≈ c1λ

`
1
~ζ1. Note that

H`~v

λ`
1

= c1
~ζ1 +

n∑
i=2

ci

(
λi

λ1

)`

~ζi,

so that

lim
`→∞

H`~v

λ`
1

= c1
~ζ1.

How do we determine the eigenvalue λ1? If n is large, then the most efficient way to accomplish this
task is not by finding all of the roots of the characteristic equation. Given a ~v0, consider the algorithm for
j = 0, 1, . . . ,

~wj =
~vj

‖~vj‖
, ~vj+1 = H ~wj .

Note that ‖~wj‖ = 1 for all j. If ~wj is an eigenvector, then we will have that ~vj+1 = λ~wj for the associated
eigenvalue λ, so that |λ| = ‖~vj+1‖/‖~wj‖ = ‖~vj+1‖. From the above discussion we expect that as j gets large
we will have that |λ1| ≈ ‖~vj+1‖. A stopping criterion could then be∣∣∣∣‖~vj+1‖ − ‖~vj‖

‖~vj‖

∣∣∣∣ < ε, 0 < ε� 1.

Remark 5.20. If |λ2/λ1| is sufficiently small, where λ2 is the second largest eigenvalue in absolute value,
then this algorithm will converge fairly quickly. Otherwise, there are other techniques that one could use.

Topic: Symmetric Matrices

The equations of motion for a coupled mass-spring system can be written in the form

M~x′′ = K~x,

where M = diag(m1, . . . ,mn) and K = KT , i.e., K is a symmetric matrix. Here mi > 0 represents the
mass on the end of spring i, ~xi is the distance of mass i from the equilibrium position, and the entries of K
are various combinations of the individual spring constants. For example, when considering a system of two
masses with only one of the springs being connected to a wall, one has that

K =
(
−(k1 + k2) k2

k2 −k2

)
,
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where ki is the spring constant for spring i.
In order to solve the ODE, set ~x(t) = eωt~v. Upon substitution this yields the linear system

(K − ω2M)~v = ~0,

i.e., we have a generalized eigenvalue problem. Note that if ω0 is an eigenvalue with eigenvector ~v0, then
−ω0 is also an eigenvalue with the same eigenvector. Further note that since K and M are real, then ω∗0 is
an eigenvalue with eigenvector ~v∗0 . Thus, eigenvalues come in the quartets {ω,−ω, ω∗,−ω∗}. If Re ω > 0,
then the oscillations of the masses will grow exponentially, while if Re ω = 0 the motion will be oscillatory
with frequency Im ω.

This problem has a great deal of structure. Some interesting questions are:

(a) What in general is known about the eigenvalue/eigenvector decomposition of symmetric matrices?

(b) How do the eigenvalues for the full problem relate to those of K and M?

Definition 5.21. Let ~v = ~a + i~b ∈ Cn be given, where ~a,~b ∈ Rn. An inner product (·, ·) on Cn can be
defined by

(~v, ~w) = ~vT ~w∗,

where ~w∗ = ~c− i~d.

Remark 5.22. (a) The inner product (·, ·) is the standard one for ~v ∈ Rn.

(b) Note that (r~v, ~w) = r(~v, ~w), while (~v, r ~w) = r∗(~v, ~w).

Proposition 5.23. The inner product (·, ·) on Cn satisfies the properties:

(a) (~v, ~w) = (~w, vv)∗

(b) (~v,~v) ≥ 0, with equality only if ~v = ~0

(c) (r~v + s~w, ~x) = r(~v, ~x) + s(~w, ~x).

Lemma 5.24. If A ∈ Rn×n is symmetric, then all of the eigenvalues are real. Furthermore, the
eigenvectors associated with distinct eigenvalues are orthogonal.

Proof: It is not difficult to show that (A~v, ~w) = (~v, AT ~w). Since A is symmetric, this implies that (A~v, ~w) =
(~v, A~w).

First suppose that A~v = λ~v. One then has that

(A~v,~v) = (λ~v,~v) = λ(~v,~v),

and
(A~v,~v) = (~v, A~v) = (~v, λ~v) = λ∗(~v,~v).

Since ~v 6= ~0, this implies that λ = λ∗, so that λ ∈ R.
Suppose that A~vi = λi~vi for i = 1, 2 with λ1 6= λ2. One has that

(A~v1, ~v2) = (λ1~v1, ~v2) = λ1(~v1, ~v2),

and
(A~v1, ~v2) = (~v1, A~v2) = (~v1, λ2~v2) = λ2(~v1, ~v2).

Since λ1 6= λ2, this implies that (~v1, ~v2) = 0.
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Definition 5.25. O ∈ Rn×n is an orthogonal matrix if its column vectors are an orthogonal with length
one, i.e., they form an orthonormal set.

Proposition 5.26. Suppose that O is an orthogonal matrix. Then O is nonsingular, and O−1 = OT .

Proof: The fact that O is nonsingular follows immediately from the fact that the column vectors are linearly
independent. If O = (~o1, . . . , ~on), then upon using the fact that

~oT
j ~oi =

{
0, j 6= i

1, j = i

it is easy to check that OT O = I.

Proposition 5.27. Suppose that O is an orthogonal matrix. Then (O~x,O~y) = (~x, ~y).

Proof: We have that
(O~x,O~y) = (~x,OT O~y) = (~x, ~y).

Remark 5.28. As a consequence, multiplication by an orthogonal matrix preserves both the angle between
vectors and the length of vectors.

Theorem 5.29 (Schur’s Theorem). If A ∈ Rn×n has only real eigenvalues, then there is an orthogonal
matrix such that OT AO is upper triangular.

Theorem 5.30. If A ∈ Rn×n is symmetric, then there is an orthogonal matrix which diagonalizes A.

Proof: Recall that (AB)T = BT AT . By Schur’s Theorem there is an orthogonal matrix O and upper
triangular matrix T such that OT AO = T . Since A is symmetric,

TT = (OT AO)T = OT AT O = OT AO,

so that TT = T , i.e., T is symmetric. Since T is upper triangular, TT is lower triangular. Since T is
symmetric, this implies that T is a diagonal matrix.

Example. Consider

A =

 0 2 −1
2 3 −2
−1 −2 0

 .

The eigenvalues are λ = −1, 5. We have that

N (A + I) = [

 1
0
1

 ,

 −2
1
0

], N (A− 5I) = [

 −1
−2

1

].
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Using the Gram-Schmidt procedure, an orthogonal basis for N (A + I) is given by

N (A + I) = [

 1
0
1

 ,

 −1
1
1

].

Normalizing all these vectors to length one gives the matrix O such that OT AO = diag(5,−1,−1).
Again consider the eigenvalue problem (K − ω2M)~v = ~0. First suppose that M = I. There is then an

orthogonal matrix OK such that OT
KKOK = DK , where DK = diag(λ1, . . . , λn) with each λi ∈ R. We have

that ω2 = λ. If λ > 0, then there will be exponential growth for the system, while if λ < 0 the motion will be
oscillatory with frequency ω. If one sets ~u = OT

K~x, so that ~x = OK~u, then the ODE uncouples and becomes

~u′′ = OT
KKOK~u = DK~u,

i.e., ~u′′i = λi~ui. Now suppose that M is merely diagonal with mi > 0. Let n(A,B) represents the number
of negative eigenvalues for the eigenvalue problem (A− λB)~v = ~0. matrix A. Because all of the eigenvalues
of M are positive, it can be shown that n(K, M) = n(K, I). Thus, if oscillatory motion is predicted for the
equal mass case, then this feature will continue to hold true as the masses are varied.
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