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Abstract. We survey the quadratic eigenvalue problem, treating its many applications, its mathe-
matical properties, and a variety of numerical solution techniques. Emphasis is given to
exploiting both the structure of the matrices in the problem (dense, sparse, real, com-
plex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify
numerical methods and catalogue available software.
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1. Introduction. On its opening day in June 2000, the 320-meter-long Millen-
nium footbridge over the river Thames in London (see Figure 1.1) started to wobble
alarmingly under the weight of thousands of people; two days later the bridge was
closed. To explain the connection between this incident and the quadratic eigenvalue
problem (QEP), the subject of this survey, we need to introduce some ideas from
vibrating systems. A natural frequency of a structure is a frequency at which the
structure prefers to vibrate. When a structure is excited by external forces whose
frequencies are close to the natural frequencies, the vibrations are amplified and
the system becomes unstable. This is the phenomenon of resonance. The exter-
nal forces on the Millennium Bridge were pedestrian-induced movements. On the
opening day, a large crowd of people initially walking randomly started to adjust
their balance to the bridge movement, probably due to high winds on that day. As
they walked, they became more synchronized with each other and the bridge started
to wobble even more. The lateral vibrations experienced on the bridge occurred
because some of its natural modes of vibration are similar in frequency to the side-
ways component of pedestrian footsteps on the bridge.1 The connection with this
survey is that the natural modes and frequencies of a structure are the solution of
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Fig. 1.1 The Millennium footbridge over the river Thames.

an eigenvalue problem that is quadratic when damping effects are included in the
model.

The QEP is currently receiving much attention because of its extensive applica-
tions in areas such as the dynamic analysis of mechanical systems in acoustics and
linear stability of flows in fluid mechanics. The QEP is to find scalars λ and nonzero
vectors x, y satisfying

(λ2M + λC +K)x = 0, y∗(λ2M + λC +K) = 0,

where M , C, and K are n× n complex matrices and x, y are the right and left eigen-
vectors, respectively, corresponding to the eigenvalue λ. A major algebraic difference
between the QEP and the standard eigenvalue problem (SEP),

Ax = λx,

and the generalized eigenvalue problem (GEP),

Ax = λBx,

is that the QEP has 2n eigenvalues (finite or infinite) with up to 2n right and 2n left
eigenvectors, and if there are more than n eigenvectors they do not, of course, form a
linearly independent set.

QEPs are an important class of nonlinear eigenvalue problems that are less fa-
miliar and less routinely solved than the SEP and the GEP, and they need special
attention. A major complication is that there is no simple canonical form analogous
to the Schur form for the SEP or the generalized Schur form for the GEP.

A large literature exists on QEPs, spanning the range from theory to applications,
but the results are widely scattered across disciplines. Our goal in this work is to
gather together a collection of applications where QEPs arise, to identify and classify
their characteristics, and to summarize current knowledge of both theoretical and
algorithmic aspects. The type of problems we will consider in this survey and their
spectral properties are summarized in Table 1.1.

The structure of the survey is as follows. In section 2 we discuss a number
of applications, covering the motivation, characteristics, theoretical results, and algo-
rithmic issues. Section 3 reviews the spectral theory of QEPs and discusses important
classes of QEPs coming from overdamped systems and gyroscopic systems. Several
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Table 1.1 Matrix properties of QEPs considered in this survey with corresponding spectral proper-
ties. The first column refers to the section where the problem is treated. Properties can
be added: QEPs for which M , C, and K are real symmetric have properties P3 and P4
so that their eigenvalues are real or come in pairs (λ, λ̄) and the sets of left and right
eigenvectors coincide. Overdamped systems yield QEPs having the property P6. In P6,
γ(M, C, K) = min{(x∗Cx)2 − 4(x∗Mx)(x∗Kx) : ||x||2 = 1}. Gyroscopic systems yield
QEPs having at least the property P7.

Matrix properties Eigenvalue properties Eigenvector properties

P1
§3.1

M nonsingular 2n finite eigenvalues

P2
§3.1

M singular Finite and infinite eigen-
values

P3
§3.1

M , C, K real Eigenvalues are real or
come in pairs (λ, λ̄)

If x is a right eigenvector of λ
then x̄ is a right eigenvector
of λ̄

P4
§3.8

M , C, K Hermitian Eigenvalues are real or
come in pairs (λ, λ̄)

If x is a right eigenvector of
λ then x is a left eigenvector
of λ̄

P5
§3.8

M Hermitian positive
definite, C, K Hermitian
positive semidefinite

Re(λ) ≤ 0

P6
§3.9

M, C symmetric positive
definite, K symmetric
positive semidefinite,
γ(M, C, K) > 0

λs are real and negative,
gap between n largest and
n smallest eigenvalues

n linearly independent
eigenvectors associated with
the n largest (n smallest)
eigenvalues

P7
§3.10

M , K Hermitian,
M positive definite,
C = −C∗

Eigenvalues are purely
imaginary or come in
pairs (λ, −λ̄)

If x is a right eigenvector of
λ then x is a left eigenvector
of −λ̄

P8
§3.10

M , K real symmetric
and positive definite,
C = −CT

Eigenvalues are purely
imaginary

linearizations are introduced and their properties discussed. In this paper, the term
linearization means that the nonlinear QEP is transformed into a linear eigenvalue
problem with the same eigenvalues. Our treatment of the large existing body of the-
ory is necessarily selective, but we give references where further details can be found.
Section 4 deals with tools that offer an understanding of the sensitivity of the problem
and the behavior of numerical methods, covering condition numbers, backward errors,
and pseudospectra.

A major division in numerical methods for solving the QEP is between those
that treat the problem in its original form and those that linearize it into a GEP of
twice the dimension and then apply GEP techniques. A second division is between
methods for dense, small- to medium-size problems and iterative methods for large-
scale problems. The former methods compute all the eigenvalues and are discussed
in section 5, while the latter compute only a selection of eigenvalues and eigenvectors
and are reviewed in section 6. The proper choice of method for particular problems
is discussed. Finally, section 7 catalogues available software, and section 8 contains
further discussion and related problems.

We shall generally adopt the Householder notation: capital letters A, B, C, . . .
denote matrices, lower case roman letters denote column vectors, Greek letters denote
scalars, ᾱ denotes the conjugate of the complex number α, AT denotes the transpose
of the complex matrix A, A∗ denotes the conjugate transpose of A, and ‖ · ‖ is any
vector norm and the corresponding subordinate matrix norm. The values taken by
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any integer variable are described using the colon notation: “i = 1:n” means the
same as “i = 1, 2, . . . , n.” We write A > 0 (A ≥ 0) if A is Hermitian positive definite
(positive semidefinite) and A < 0 (A ≤ 0) if A is Hermitian negative definite (negative
semidefinite). A definite pair (A,B) is defined by the property that A,B ∈ C

n×n are
Hermitian and

min
z∈Cn

‖z‖2=1

√
(z∗Az)2 + (z∗Bz)2 > 0,

which is certainly true if A > 0 or B > 0.

2. Applications of QEPs. A wide variety of applications require the solution
of a QEP, most of them arising in the dynamic analysis of structural mechanical,
and acoustic systems, in electrical circuit simulation, in fluid mechanics, and, more
recently, in modeling microelectronic mechanical systems (MEMS) [28], [155]. QEPs
also have interesting applications in linear algebra problems and signal processing.
The list of applications discussed in this section is by no means exhaustive, and, in
fact, the number of such applications is constantly growing as the methodologies for
solving QEPs improve.

2.1. Second-Order Differential Equations. To start, we consider the solution
of a linear second-order differential equation

Mq̈(t) + Cq̇(t) +Kq(t) = f(t),(2.1)

where M,C, and K are n × n matrices and q(t) is an nth-order vector. This is the
underlying equation in many engineering applications. We show that the solution can
be expressed in terms of the eigensolution of the corresponding QEP and explain why
eigenvalues and eigenvectors give useful information.

Two important areas where second-order differential equations arise are the fields
of mechanical and electrical oscillation. The left-hand picture in Figure 2.1 illustrates
a single mass-spring system in which a rigid block of mass M is on rollers and can
move only in simple translation. The (static) resistance to displacement is provided
by a spring of stiffness K, while the (dynamic) energy loss mechanism is represented
by a damper C; f(t) represents an external force. The equation of motion governing
this system is of the form (2.1) with n = 1.

As a second example, we consider the flow of electric current in a simple RLC
circuit composed of an inductor with inductance L, a resistor with resistance R, and
a capacitor with capacitance C, as illustrated on the right of Figure 2.1; E(t) is
the input voltage. The Kirchhoff loop rule requires that the sum of the changes in
potential around the circuit must be zero, so

L
di(t)

dt
+Ri(t) +

q(t)

C
− E(t) = 0,(2.2)

where i(t) is the current through the resistor, q(t) is the charge on the capacitor, and
t is the elapsed time. The charge q(t) is related to the current i(t) by i(t) = dq(t)/dt.
Differentiation of (2.2) gives the second-order differential equation

L
d2i(t)

dt2
+R

di(t)

dt
+

1

C
i(t) =

dE(t)

dt
,(2.3)

which is of the same form as (2.1), again with n = 1.
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Fig. 2.1 Left: Single mass-spring system. Right: A simple electric circuit.
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Fig. 2.2 Response of the single degree of freedom mass-spring system of Figure 2.1 for different
values of the viscous damping factor ζ = C/2Mω and initial conditions q(0) = 0, q̇(0) = 10.

Let us briefly discuss the solution of the homogeneous equation (2.1) with f = 0
and n = 1, rewritten in the form, for M 6= 0,

q̈(t) + 2ζωq̇(t) + ω2q(t) = 0, ω =

√
K

M
, ζ =

C

2Mω
.(2.4)

In engineering, ω is called the natural frequency and ζ is a dimensionless quantity
known as the viscous damping factor. The general solution to (2.4), also called the
free response, is

q(t) = α1e
λ1t + α2e

λ2t,

where λ1,2 =
(

− ζ ±
√
ζ2 − 1

)
ω are the roots of λ2 + 2ζωλ+ ω2 = 0 and α1, α2 are

constants determined by the initial conditions q(t0), q̇(t0). Figure 2.2 illustrates the
behavior of the solution for different values of the viscous damping factor ζ. For ζ = 0,
the system governed by (2.4) is undamped and executes simple harmonic oscillation
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with natural frequency ω. For 0 < ζ < 1, referred to as the underdamped case, the
solution is a sine wave with a decaying amplitude. For ζ > 1 the solution is a decaying
exponential; this is the overdamped case. The case ζ = 1 is known as critical damping

and corresponds to a double root (λ1 = λ2). This is the smallest amount of damping
for which no oscillation occurs in the free response q(t).

The properties of systems of second-order differential equations (2.1) for n ≥ 1
have been analyzed in some detail by Lancaster [87] and more recently by Gohberg,
Lancaster, and Rodman [62]. For simplicity, we examine the case where all the eigen-
values λi, i = 1: 2n, of (λ2M + λK + C)x = 0 are distinct. The case of nondistinct
eigenvalues is considered in section 3.7. We write

Λ = diag(λ1, λ2, . . . , λ2n), X = [x1, x2, . . . , x2n], Y = [y1, y2, . . . , y2n],(2.5)

where xi and yi are right and left eigenvectors, respectively, corresponding to λi. In
this case the general solution to the homogeneous equation (2.1) (f(t) = 0) can be
written as

q(t) =

2n∑

k=1

αkxke
λkt = XeΛta,(2.6)

where a = [α1, . . . , α2n]T is a vector of arbitrary constants.
If an eigenvalue has positive real part, ‖q(t)‖ can grow exponentially toward

infinity. If the 2n eigenvalues satisfy Re(λk) < 0, k = 1: 2n, then the homogeneous
second-order differential equation is stable, that is, limt→∞ ‖q(t)‖ = 0 (see section 3.7
for a weaker definition of stability when Re(λk) ≤ 0, k = 1: 2n).

Suppose now that we are interested in the response q(t) of a system (2.1) excited
by a time harmonic force f(t) = f0e

iω0t with frequency ω0. This can be, for instance,
a structure vibrated by a shaker on a test bank. In this case, a particular solution
qp(t) is given by

qp(t) = eiω0t
2n∑

j=1

y∗
j f0

iω0 − λj
xj ,(2.7)

provided iω0 is not an eigenvalue of λ2M +λC +K [87, sect. 6.3]. As iω0 approaches
an eigenvalue λj , the jth coefficient y∗

j f0/(iω0 − λj) in the expansion (2.7) increases
indefinitely provided that y∗

j f0 6= 0. In such a case, the system is said to approach
a resonance condition. Depending on the application, the resonance phenomenon
might be wanted or unwanted. For the Millennium Bridge it is unwanted. On the
other hand, in many electrical engineering applications, such as the tuning of a radio,
the interest is in finding an amplitude at resonance that is as large as possible.

How can instability and unwanted resonance be avoided for a given system? The
system (2.1) can be controlled with the application of a forcing function or state
feedback controller of the form

f(t) = −B
(
FC q̇(t) + FKq(t) + r(t)

)
,

where FC , FK ∈ C
m×n, B ∈ C

n×m, and r(t) ∈ C
m with m ≤ n. In this case, (2.1) is

replaced by the closed loop system

Mq̈(t) + (C +BFC)q̇(t) + (K +BFK)q(t) = −Br(t)
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and corresponding QEP
(
λ2M + λ(C +BFC) +K +BFK

)
x = 0.(2.8)

The behavior of the new system can be shaped by selecting the feedback gain matrices
FC and FK to assign a set of desired eigenvalues to the QEP (2.8) [109]. This is an
inverse eigenvalue problem. In the case m = 1, the partial pole assignment problem
by state feedback control is to find feedback vectors fT

C and fT
K such that some of

the eigenvalues of (2.8) are prescribed and the others are in the spectrum of λ2M +
λC + K. By this means, eigenvalues corresponding to unstable modes or yielding
large vibrations can be relocated or damped. This problem has an explicit solution
in the case where M , C, and K are symmetric, M is positive definite, and all the
eigenvalues are distinct [33].

2.2. Vibration Analysis of Structural Systems—Modal Superposition

Method. As mentioned previously, structural mechanics is one of the major areas
where second-order differential equations arise. The ultimate goals of vibration anal-
ysis are to determine the effect of vibration on the performance and safety of systems
and to control this effect. In this section we give some insight into the physics of
the problem, the techniques used by engineers to obtain the solution, and the prob-
lems engineers are facing. We emphasize the structure and properties of the matrices
defining the QEP, as they are important when designing a numerical method for the
solution of the eigenvalue problem.

The equations of motion arising in the dynamic analysis of structures discretized
by the finite element method are of the form considered in the previous section,
namely,

Mq̈(t) + Cq̇(t) +Kq(t) = f(t),(2.9)

where M is now called the mass matrix, C is the viscous damping matrix, K is the
stiffness matrix, and f(t) is a time-dependent external force vector. The matrices
M and K are related to the kinetic and strain energy, respectively, by a quadratic
form, which makes them symmetric; furthermore, for most structures, M and K are
positive definite and sparse. Unfortunately, the damping properties of a system are
rarely known in the same way as those of the inertia and stiffness, making the damping
matrix sometimes difficult to evaluate precisely [29], [30], [134].

In section 2.1 we showed that the general solution to the homogeneous equation
is a vital preliminary to subsequent stability and dynamic response analysis of the
system and that this solution is given in terms of the solution of the QEP

(λ2M + λC +K)x = 0.(2.10)

We assume thatM andK are real andM > 0 orK > 0 (see section 1 for the definition
of M > 0), so that (M,K) is a real definite pair, which implies the existence of a
matrix X ∈ R

n×n of eigenvectors such that

XTMX = I, XTKX = Ω2,

where Ω2 is a nonnegative diagonal matrix containing the inverse of the n eigenvalues
of (M,K). Then, premultiplying (2.9) by XT and letting q(t) = Xy(t) gives the
modal equation

ÿ(t) +XTCXẏ(t) +Ω2y(t) = XT f(t).(2.11)
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When the system is undamped (C = 0), (2.11) is a system of uncoupled second-order
differential equations that can be solved separately. The complete solution is then
obtained by superposing the modal solutions of (2.11) using q(t) = Xy(t). This is
referred to as the modal superposition method.

When damping is present, the differential equations in (2.11) are coupled unless
the damping matrix satisfies the orthogonality conditions

xT
j Cxi = 0, j 6= i,

in which case the damping is called proportional damping. A general class of matrices
giving proportional damping, for nonsingular M , is [30, sect. 13.3]

C =
∑

j

αjM(M−1K)j = α0M + α1K + α2KM
−1K + · · · ,

in which as many terms can be included as desired. Note that Rayleigh damping,
where C = α0M+α1K, is a particular case of proportional damping commonly used in
practice. Proportional damping assumes that the energy loss mechanism is distributed
over the structure in the same way as the mass and the stiffness. With proportional
damping the solution is again easily determined by the modal superposition method.
Another major advantage of the modal superposition method is that, in general,
the response q(t) of a system is largely determined by just a few of the eigenvalues
nearest to the real axis (lower modes) so that the superposition process does not
require knowledge of all the modes to get a useful estimate of the response q(t).
However, there are situations for which ignoring higher modes introduces large error
in the calculated response q(t). There is a need for efficient techniques that take into
account the effects of higher modes without having to compute all the modes and for
estimates of the error due to the truncation.

Assuming proportional damping greatly simplifies the analysis, but this assump-
tion is usually not valid and does not lead to a satisfactory estimate of the response
of structures when dynamic effects dominate. Nonproportionally damped systems
arise, for example, when new energy-dissipative materials and concentrated damping
devices cause a significant variation between energy absorption rates of materials in
different parts of the structure. Other nonproportionally damped systems come from
soil-structure and fluid-structure interaction problems that involve subsystems with
heterogeneous dissipation properties. A specific example of a system that is not classi-
cally damped is the idealized nuclear power plant of Figure 2.3, which consists of four
elastically interconnected rigid structures that have their own physical properties.

To solve (2.9) for nonproportionally damped systems, one can use a direct time-
history integration method [128], but this does not provide the insight into the reso-
nant behavior that is fundamentally important to the design of a vibrating system.

To uncouple the equations in (2.9) and use the modal superposition technique,
one needs the eigensolution of the damped system (2.10) [51], [67]. The differential
equation (2.9) is reformulated into a first-order 2n-dimensional equation

Ap(t) +Bṗ(t) = g(t),(2.12)

where, for instance,

A =

[
0 I
K C

]
, B =

[
−I 0
0 M

]
, g(t) =

[
0
f(t)

]
, p(t) =

[
q(t)
q̇(t)

]
.(2.13)



THE QUADRATIC EIGENVALUE PROBLEM 243

Basement

Building

PCPV

Core

u4 φ4φ2

u2

u1
φ1

φ3

u3

Fig. 2.3 Nuclear power plant simplified into an eight-degrees-of-freedom system, from [79]. The
system is composed of four elastically interconnected different types of rigid structures:
core, prestressed concrete pressure vessel (PCPV), building, and basement. Each structure
has two degrees of freedom that correspond to sway direction u and rocking direction φ.

The solution of the homogeneous equation Ap(t) + Bṗ(t) = 0 is sought in the form
p(t) = ueλt, yielding the GEP Au = λBu. If all the eigenvalues are distinct, the pair
(A,B) is diagonalizable [125, Prop. 9.2],

W ∗AU = diag(α1, . . . , α2n), W ∗BU = diag(β1, . . . , β2n),

where W and U are 2n × 2n matrices containing the left and right eigenvectors of
(A,B) and W ∗ = UT if A and B are real. Let p(t) = Uz(t), αi = w∗

iAui, and
βi = w∗

iBui. Then (2.12) can be reduced to 2n decoupled equations

αizi(t) + βiżi(t) = w∗
i g(t).

The solution q(t) is recovered from q(t) = [ I 0 ]Uz(t). From a numerical standpoint,
since A and B in (2.13) are 2n× 2n matrices, the computation, execution time, and
also storage requirement increase compared with the n × n GEP-based solution of
proportionally damped problems. Fortunately, as the response is typically dominated
by a relatively small number of the lowest modes, it is not necessary to compute the
complete eigensystem of (A,B).

Gyroscopic systems are another important class of nonproportionally damped
systems. They correspond to spinning structures where the Coriolis inertia forces are
taken into account. These forces are represented by a term Gq̇(t) added to (2.9),
where G is real and skew-symmetric (G = −GT ). Examples of such systems include
helicopter rotor blades and spin-stabilized satellites with flexible elastic appendages
such as solar panels or antennas (see Figure 2.4). Gyroscopic systems are widely
known to exhibit instabilities whose analysis is nontrivial [44], [87], [89].

When the system is subjected to certain forces such as friction or follower forces, a
constraint or structural damping matrix D that can be unsymmetric [102] is added to
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Fig. 2.4 Spacecraft with deployable antenna and two solar panels attached to a rigid base undergoing
angular motion of angular velocity Ω.

the symmetric stiffness matrix K. Also affecting K is any hysteretic damping, which
may be modeled by adding a pure imaginary but symmetric matrix. If both Coriolis
forces and damping effects are present, the equation of motion takes the general form
[154]

Mq̈(t) + (C +G)q̇(t) + (K +D)q(t) = f(t).(2.14)

How does one prevent resonant oscillation in a building? The basic method is to
change its period by reinforcing its structure to make it stiffer [126]. This is often a
costly remedy. For the Millennium Bridge, this solution has been discarded by Ove
Arup, the engineers who built the bridge, because the lateral stiffness of the bridge
would need to be increased by a factor of around 9, which would significantly alter
the character of the bridge.2 The solution to be implemented uses tuned dynamic
dampers, which oscillate in the opposite direction to the bridge [34]:

The futuristic footbridge, spanning the Thames by St Paul’s Cathe-

dral, will be fitted with shock absorbers to reduce the alarming 10cm
swaying first noticed when a huge crowd surged across at its opening

in June. The bridge, designed by Lord Foster and closed three days af-

ter its opening, will be fitted with “viscous dampers” and “tuned mass

dampers”—likened to shock absorbers—by the bridge’s engineers, Ove

Arup.

2.3. Vibro-Acoustics. A great deal of attention has recently been given to fluid-
structure interaction problems with the major goal of decreasing the level of noise in
aircraft and cars. In this section, we consider the linear oscillations of an acoustic (i.e.,
inviscid, compressible, barotropic) fluid in a cavity, with reflecting walls and absorbing
walls able to dissipate acoustic energy. This can be, for instance, the propagation of
sound in a room where one of the walls is coated with an absorbing material (see
Figure 2.5). The equations characterizing the wave motion in Ω ⊂ R

2 can be taken
to be [18], [118]

ρ
∂2U

∂t2
+ ∇P = 0, P = −ρc2 divU,(2.15)

2http://www.arup.com/MillenniumBridge
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Fig. 2.5 Fluid in a cavity with one absorbing wall.

where the acoustic pressure P and the fluid displacement U depend on space x and
time t, ρ is the fluid density, and c is the speed of sound in air. The boundary
conditions are





U · ν = 0 on Γ1 (reflecting boundary),

αU · ν + β
∂U

∂t
· ν = P on Γ2 (absorbing boundary),

(2.16)

where ν is the normal to the boundary, and α, β are coefficients related to the normal
acoustic impedance (see [18]). Let

V =
{
v ∈ H(div, Ω) : v · ν ∈ L2(∂Ω) and v · ν = 0 on Γ1

}
.

A variational formulation of (2.15)–(2.16) involving only displacement variables, with
P and U of the form P (x, t) = p(x)eλt and U(x, t) = u(x)eλt, yields the following
problem: find λ ∈ C and u ∈ V, u 6= 0, such that

λ2

∫

Ω

ρu · v + λ

∫

Γ2

β u · ν v · ν +

∫

Γ2

α u · ν v · ν +

∫

Ω

ρc2 div u div v(2.17)

for all v ∈ V. This is a quadratic eigenvalue problem for operators. λ = 0 is one
eigenvalue with corresponding eigenspace

X = {u ∈ V : div u = 0 in Ω and u · ν = 0 on ∂Ω} .

In the displacement formulation for the fluid, zero eigenvalues are expected and cor-
respond to modes with no physical meaning. After a discretization of (2.17), these
modes may not correspond to zero eigenvalues and they are mixed among modes that
have a physical meaning. In [18] a discretization based on Raviart–Thomas finite ele-
ments is used. This numerical scheme is proved to converge and to be free of spurious
modes.

This application raises the problem of truncation error due to the discretization
of operators in an infinite-dimensional space. We will not treat this aspect in this
paper but will restrict ourselves to the study of QEPs of finite dimension.

2.4. Fluid Mechanics. Eigenvalue problems arise in fluid mechanics in the study
of the linear stability of flows. Temporal stability analysis leads to generalized eigen-
value problems [103], [119], whereas spatial stability analysis leads to polynomial
eigenvalue problems of degree 2 or higher [22], [71]. The aim in this type of analysis
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Fig. 2.6 Coordinate system for attachment-line boundary layer flow.

is to understand the instability mechanisms that cause transition from laminar to
turbulent flows.

As an example, we consider the stability of incompressible attachment-line bound-
ary layers, which have some practical importance in the design of laminar-flow wings
[70], [138]. An attachment line is formed on the surface of any cylindrical object im-
mersed in fluid flows, as shown in Figure 2.6. The x-axis is taken to be the chordwise
direction, the y-axis is the direction normal to the surface, and the z-axis is in the
spanwise direction. For viscous incompressible flow over a swept body, the local so-
lution in the vicinity of the attachment line can be represented by the Hiemenz flow,
which is an exact solution of the Navier–Stokes equations given by

q̄(x, y) = (xū(y)/R, v̄(y)/R, w̄(y), p̄(x)) ,

where R is the Reynolds number, (ū, v̄, w̄) is the flow velocity vector in the xyz-
coordinates, and p̄ = −x2/2R denotes the pressure.

To derive the linear stability equations we consider small disturbances propagating
along the attachment line. The perturbed Hiemenz flow can be expressed as

q̃(x, y, z, t) = q̄(x, y) + q′(x, y, z, t),(2.18)

where q′(x, y, z, t) is the disturbance quantity. From the special structure of the
Hiemenz flow, we can assume the separation in the variables z and t so that

q′(x, y, z, t) ≈ q(x, y)ei(βz−ωt), q(x, y) = (u, v, w, p).(2.19)

Substituting (2.18) together with (2.19) into the incompressible Navier–Stokes equa-
tions and linearizing with respect to the small perturbations gives a set of partial
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differential equations that describes the stability characteristics of small perturba-
tions:

−iωu+ ūux + v̄uy + ūyv + px −
1

R
(uxx + uyy) + iw̄βu+

β2

R
u = 0,

−iωv + ūvx + v̄vy + v̄yv + py −
1

R
(vxx + vyy) + iw̄βv +

β2

R
v = 0,(2.20)

−iωw + ūwx + v̄wy + w̄yv −
1

R
(wxx + wyy) + iw̄βw + iβp+

β2

R
w = 0,

ux + vy + iβw = 0.

Appropriate boundary conditions must be added [71], [98]. The stability analysis is
pursued by discretizing the equations (2.20) using a suitable numerical method such
as a spectral collocation method [98], [144] or a finite difference scheme [71]. The
discretization leads to

(ωA1 +A2 + βA3 + β2A4)q = 0,(2.21)

with complex coefficient matrices Ai, i = 1: 4. Note that if a spectral collocation
method is used, the resulting matrices are dense, whereas if finite differences are
used, the matrices are larger but sparse.

When studying the temporal stability, β is a real and fixed wavenumber. Equation
(2.21) is then a GEP with eigenvalue ω. The imaginary part of ω represents the
temporal growth rate. For spatial stability, ω is a known, real parameter. Since the
unknown β appears quadratically in (2.21), we now have a QEP in β. Im(β) < 0
signifies spatially amplified disturbances in the positive direction of z.

2.5. Constrained Least Squares Problem. Let A ∈ R
n×n be symmetric and

b ∈ R
n and consider the constrained least squares problem

min
{
xTAx− 2bTx : xTx = α2

}
.(2.22)

This problem can be reduced to a QEP, as we show now, by applying the method of
Lagrange multipliers. Let

φ(x, λ) = xTAx− 2bTx− λ(xTx− α2).

Differentiating φ with respect to x and then λ yields the equations

Ax− λx = b, α2 = xTx.(2.23)

In [57] it is shown that the smallest solution λ of these equations is needed to solve
(2.22). Assuming that λ is not an eigenvalue of A, and setting y = (A − λI)−2b =
(A− λI)−1x, (2.23) is equivalent to

bT y − α2 = 0,(2.24)

(A− λI)2y = b.(2.25)

From (2.24) we have (bT y)/α2 = 1, and by expanding (2.25) we get the symmetric
QEP

(
λ2I − 2λA+ (A2 − α−2bbT )

)
y = 0.(2.26)

The solution of (2.22) is x = (A−λI)−1b, where λ is the smallest eigenvalue of (2.26).



248 FRANÇOISE TISSEUR AND KARL MEERBERGEN

2.6. Signal Processing. In the linear predictive coding of speech, biomedical sig-
nal processing, and time series forecasting, the signal is modeled as an autoregressive
(AR) process of the form

xt = −

p∑

k=1

αkxt−k + ǫt, t = 1:n,

where n is the number of data points, p is the order of the process, ǫt is zero-mean
white noise with variance σǫ, and the xt, t = −p+1: 0, are given. The parameters αk

can be estimated by taking n = p and solving the Yule–Walker equations:

Rα = −rx,

where rx = [rx
1 , . . . , r

x
p ]T is a vector whose components rx

k = E(xt, xt+k) are the auto-
correlation function of xt, R ∈ R

p×p is a symmetric Toeplitz matrix with coefficients
Rij = rx

|j−i|, and α = [α1, . . . , αp]
T is the AR parameter vector. The solution can be

computed in 2n2 flops using Durbin’s algorithm [64].
Often, the signal to be modeled is observed with noise [36], [80]. The observed

time series are

yt = xt + wt, t = 1:n,

where wt is an uncorrelated white observation noise with unknown variance σw. In
this case the Yule–Walker estimates of the parameters of the model are biased and
can produce misleading results. A way to remedy this problem is Davila’s subspace
approach [36]. Davila used the noise-compensated Yule–Walker equations defined by

(S − λB)v = 0,(2.27)

where S ∈ R
(p+n)×(p+1) with n ≥ p is now rectangular, with coefficients Sij = ry

i−j+1

defined from the autocorrelation functions of yt, and

B =

[
0 Ip
0 0

]
∈ R

(p+n)×(p+1),

with Ip the p × p identity matrix. The unknowns are v = [1, α1, . . . , αp]
T and λ,

which is an estimate of the unknown variance σ2
w. Premultiplying (2.27) on the left

by (S − λB)T leads to the (p+ 1) × (p+ 1) symmetric QEP

(A0 + λA1 + λ2A2)v = 0,

where A0 = STS, A1 = −(STB + BTS), and A2 = BTB. The parameter estimates
of the AR process are obtained from the eigenvector corresponding to the smallest
eigenvalue in modulus.

2.7. MIMO Systems. Suppose that the system (2.9) is controlled by some input
function u(t) ∈ C

m, m ≤ n, and that there is an output vector y(t) ∈ C
r, r ≤ n, that

depends linearly on q(t). This dynamical system is modeled by
{
Mq̈(t) + Cq̇(t) +Kq(t) = Bu(t),
y(t) = Lq(t),

(2.28)

where B ∈ C
n×m and L ∈ C

r×n are input and output influence matrices, respectively.
The vector q(t) describes the state of the system. Taking Laplace transforms of
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the multiple input, multiple output (MIMO) system (2.28) and assuming zero initial
conditions gives

{
s2Mq̄(s) + sCq̄(s) +Kq̄(s) = Bū(s),
ȳ(s) = Lq̄(s).

Clearly ȳ(s) = G(s)ū(s), where G(s) = L(s2M + sC +K)−1B is called the transfer
function matrix since it relates the Laplace transform of the output vector to that
of the input vector. When M is nonsingular and all the eigenvalues are distinct,
(s2M + sC +K)−1 = X(sI − Λ)−1Y ∗ (see section 3.5), where Λ, X, and Y are the
matrices of eigenvalues and right and left eigenvectors, respectively. The eigenvalues
of the quadratic polynomial s2M + sC + K are the poles of G(s). In the case of a
single input, single output (SISO) system, B = b and L∗ = l are vectors (r = 1,
m = 1) and the transfer function has the form

G(s) =

2n∑

i=1

(l∗xi)(y
∗
i b)

s− λi
.(2.29)

Classical control theory is based on the study of G(s). For the frequency response
analysis of (2.28), engineers are interested in the values of the transfer function G(s),
with s on the imaginary axis, say, s = iω, in a certain range ω ∈ [a, b]. In practice,
it is not advisable to compute G(s) using the partial fraction representation (2.29)
as this form is ill conditioned. When the problem is of reasonable size, a number of
methods proposed for the linear case [92], [104] can be extended to the quadratic case
with the use of an appropriate linearization of Q(s) = s2M + sC +K.

A typical example of very large problems is in the analysis of interconnected
RLC circuits for a very large scale integration (VLSI) chip. Before any numerical
model becomes feasible, the original model (2.28) needs to be replaced with a reduced
mathematical description that retains sufficient information about the original circuit.
This is the aim of model reduction. The dynamical system (2.28) is replaced by the
system

{
M̃ ¨̃q(t) + C̃ ˙̃q(t) + K̃q̃(t) = B̃u(t),

ỹ(t) = L̃q̃(t),
(2.30)

whose constituent matrices are of smaller dimension and are such that for any ad-
missible input u(t), ỹ(t) is a good approximation of y(t). Note that the poles of the

reduced transfer function G̃(s) provide approximations of the eigenvalues of Q(s).
Several approaches can be taken to the model reduction problem, notably model

reduction via balanced realization and Hankel norm error estimates [61], [106], Krylov
subspace projection by Padé approximation via the Lanczos method (PVL) [46], [9],
or multipoint rational interpolation [56], [65], [129], [149]. In contrast with the linear
case, we are not aware of any model reduction techniques that actually build the
dynamical system (2.30).

3. Spectral Theory. In this section we give a general description of the spectral
theory associated with QEPs, beginning with general structure and then moving on
to QEPs in which the coefficient matrices have certain properties such as symmetry
or skew-symmetry.
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3.1. General Background. Throughout the rest of the paper

Q(λ) = λ2M + λC +K

is an n × n matrix polynomial of degree 2, where M , C, and K are n × n matrices
with complex entries. In other words, the coefficients of the matrix Q(λ) are quadratic
polynomials in the scalar λ. We will often call Q(λ) a λ-matrix. We denote by Λ(Q)
the spectrum of Q(λ),

Λ(Q) = {λ ∈ C : detQ(λ) = 0} ,

that is, the set of eigenvalues of Q(λ).
The λ-matrix Q(λ) is called regular when detQ(λ) is not identically zero for all

values of λ, and nonregular otherwise. Unless otherwise specified we assume that
Q(λ) is regular.

The characteristic polynomial is detQ(λ) = det(M)λ2n + lower order terms, so
when M is nonsingular, Q(λ) is regular and has 2n finite eigenvalues. When M is
singular the degree of detQ(λ) is r < 2n and Q(λ) has r finite eigenvalues, to which we
add 2n−r infinite eigenvalues. Infinite eigenvalues correspond to the zero eigenvalues
of the reverse polynomial λ2Q(λ−1) = λ2K +λC +M . A regular Q(λ) may have two
distinct eigenvalues having the same eigenvector.

To illustrate, the λ-matrix defined by

Q(λ) =



λ+ 1 6λ2 − 6λ 0
2λ 6λ2 − 7λ+ 1 0
0 0 λ2 + 1


 ,

or equivalently by

M =




0 6 0
0 6 0
0 0 1


 , C =




1 −6 0
2 −7 0
0 0 0


 , K = I,

is regular because

detQ(λ) = −6λ5 + 11λ4 − 12λ3 + 12λ2 − 6λ+ 1 6≡ 0.

There are six eigenpairs (λk, xk), k = 1: 6, given by

k 1 2 3 4 5 6
λk 1/3 1/2 1 i −i ∞

xk




1
1
0







1
1
0







0
1
0







0
0
1







0
0
1







1
0
0


.

Five of the eigenvalues are finite (they are the roots of detQ(λ)) and one of them is
infinite. We see that while λ1 6= λ2 we have x1 = x2. This example illustrates the
fact that if a regular Q(λ) has 2n distinct eigenvalues, then there exists a set of n
linearly independent eigenvectors [62, Thm. 3.21], which is a nontrivial generalization
of standard results for the SEP and the GEP.

When the coefficient matrices are real, the spectrum of Q(λ) is symmetric with
respect to the real axis of the complex plane, and therefore the eigenvalues are either
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Fig. 3.1 Spectrum of the eight-degrees-of-freedom simplified nuclear power plant system illustrated
in Figure 2.3. Left: M , C, and K are real. Right: Hysteretic damping is added so that K
is complex.

real or occur in complex conjugate pairs. For example, the matrices defining Q(λ)
for the nuclear power plant model in Figure 2.3 as defined in [79] are all real. The
symmetry of the spectrum is illustrated on the left side of Figure 3.1. The plot on the
right shows the spectrum for the same problem where hysteretic damping is added:
the stiffness matrix K is replaced by (1+iµ)K with hysteretic damping factor µ = 0.2
and is now complex.

The algebraic multiplicity of an eigenvalue λ0 is the order, α, of the corresponding
zero in detQ(λ). The geometric multiplicity of λ0, γ, is the dimension of Ker(Q(λ0)).
For a simple eigenvalue we have α = γ = 1, and for a semisimple eigenvalue we have
α = γ. A defective eigenvalue is an eigenvalue that is not semisimple. An eigenvalue of
multiplicity k > n is necessarily defective. We say that x1 is a generalized eigenvector

associated with λ0 if x1 is a solution of the equation [91, Chap. 14]

Q(λ0)x1 = −Q′(λ0)x0

for some eigenvector x0, where Q′(λ0) = 2λ0M + C. A semisimple eigenvalue is an
eigenvalue for which there is no generalized eigenvector. More generally, we say that
x0, . . . , xm−1 form a Jordan chain of length m for Q(λ) associated with the eigenvalue
λ0 if the following m relations hold:

Q(λ0)x0 = 0,
Q(λ0)x1 +Q′(λ0)x0 = 0,
Q(λ0)x2 +Q′(λ0)x1 + 1

2Q
′′(λ0)x0 = 0,

...
Q(λ0)xm−1 +Q′(λ0)xm−2 + 1

2Q
′′(λ0)xm−3 = 0.

x0 6= 0 is an eigenvector and the subsequent vectors x1, . . . , xm−1 are generalized
eigenvectors. In contrast to the Jordan chain of a single matrix A, the vectors xi,
i = 0:m − 1, need not be linearly independent. Furthermore, it is possible for a
generalized eigenvector to be the zero vector.

3.2. Division and Factorization. Define

Q(S) = MS2 + CS +K, S ∈ C
n×n.(3.1)
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Then

Q(λ) −Q(S) = M(λ2I − S2) + C(λI − S)

= (λM +MS + C)(λI − S),(3.2)

which is the generalized Bézout theorem [58, p. 81] for matrix polynomials of degree
2. A solution S ∈ C

n×n of the quadratic matrix equation Q(S) = 0 (if one exists)
is called a solvent (more precisely, S is a right solvent to distinguish it from a left
solvent, which is a solution of S2M + SC + K = 0). Theory on the existence of
solvents is given in [40], [73], [74], [91, pp. 520–526]. If S is a solvent, the generalized
Bézout theorem gives

Q(λ) = (λM +MS + C)(λI − S),(3.3)

which provides a factorization of Q(λ). Note that we cannot interchange the order
of the two factors on the right of (3.3) in general, since matrix multiplication is not
commutative. Equation (3.3) shows that the eigenvalues of Q(λ) are those of the pair
(MS + C,−M) together with those of the matrix S, an observation that is the basis
of a numerical method described in section 5.

3.3. Canonical Form. Two λ-matrices P (λ) and Q(λ) of the same dimension are
equivalent if

P (λ) = E(λ)Q(λ)F (λ),

where E(λ), F (λ) are λ-matrices with constant nonzero determinants. It follows that
the zeros of detP (λ) and detQ(λ) coincide. If E(λ) and F (λ) are independent of λ
then P (λ) and Q(λ) are said to be strictly equivalent.

The Smith theorem provides a canonical (simplest possible) λ-matrix equivalent
to Q(λ) that displays the invariants that are common to all the λ-matrices equivalent
to Q(λ). The Smith theorem says that Q(λ) is equivalent to a diagonal matrix,

Q(λ) = E(λ)Γ (λ)F (λ),(3.4)

where Γ (λ) = diag
(
e1(λ), e2(λ), . . . , en(λ)

)
and ei(λ) is a monic polynomial such

that ei(λ) divides ei+1(λ). The diagonal matrix Γ (λ) is called the Smith form or
canonical form of Q(λ), and it is unique, though E(λ) and F (λ) are not. For a proof
of the decomposition (3.4) we refer to [58], [62], [150, pp. 19–20]. The polynomials
e1(λ), . . . , en(λ) are called the invariant polynomials of Q(λ). To gain some insight
into the decomposition (3.4) we consider the case where Q(λ) has 2n distinct eigen-
values. In this case, one can show (see [87, sect. 3.3], for instance) that ei(λ) = 1,

i = 1:n− 1, and en(λ) =
∏2n

i=1(λ− λi).

3.4. Linearization. In this section we consider a transformation of a λ-matrix
Q(λ) analogous to the linearization of a second-order differential equation, that is, its
reduction to a first-order equation. On defining q0 = q, q1 = q̇0, (2.1) is replaced by
an equivalent system that has twice as many unknowns [qT

0 , q
T
1 ]T :

Mq̇1 + Cq1 +Kq0 = f,

q1 = q̇0.

The corresponding transformation for Q(λ) = λ2M +λC +K is to find an equivalent
linear λ-matrix A−λB. We say that a 2n×2n linear λ-matrix A−λB is a linearization
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of Q(λ) [62], [91] if

[
Q(λ) 0

0 In

]
= E(λ)(A− λB)F (λ),(3.5)

where E(λ) and F (λ) are 2n × 2n λ-matrices with constant nonzero determinants.
Clearly, the eigenvalues of Q(λ) and A− λB coincide. A linearization is not unique,
and it is important to choose one that respects the symmetry and other structural
properties of Q(λ), if possible.

Most of the linearizations used in practice are of the first companion form,

L1:

[
0 N

−K −C

]
− λ

[
N 0
0 M

]
,(3.6)

or the second companion form,

L2:

[
−K 0
0 N

]
− λ

[
C M
N 0

]
,(3.7)

where N can be any nonsingular n × n matrix. To show that (3.6) is a linearization
of Q(λ), just multiply (3.6) on the left by E(λ) and on the right by F (λ), where

E(λ) =

[
−(C + λM)N−1 −I

N−1 0

]
, F (λ) =

[
I 0
λI I

]
.(3.8)

The easiest way to construct a linearization is to use a substitution such as u = λx in
(λ2M + λC +K)x = 0 and rewrite the equation as λMu+Cu+Kx = 0. This yields
the GEP

[
0 I

−K −C

] [
x
u

]
− λ

[
I 0
0 M

] [
x
u

]
= 0,

which corresponds to the first companion form, with N = I. The second companion
form is obtained by rewriting the equation as λMu+ λCx+Kx = 0.

The choice between (3.6) and (3.7) may depend on the nonsingularity of M and
K. In general N is chosen to be the identity matrix or a multiple of the identity
matrix such as ‖M‖I or ‖K‖I [1].

3.5. Inverse of Q(λ). This section treats a special case of the general theory of
the realization of rational matrix functions [121]. The matrix Q(λ)−1 is called the
resolvent of Q(λ) and is closely related to the transfer function for a time-invariant
linear system.

Let A − λB be a linearization of Q(λ). Then there exist nonsingular matrices
E(λ) and F (λ) such that (3.5) holds. Hence,

Q(λ)−1 = [ I 0 ]F (λ)−1(A− λB)−1E(λ)−1

[
I
0

]
.(3.9)

For the rest of this section, we take A−λB to be the first companion linearization
(3.6) of Q(λ) with N = −K for which, using (3.8), we find that (3.9) simplifies to

Q(λ)−1 = − [ I 0 ] (A− λB)−1

[
0
I

]
.
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Next we obtain an explicit expression for the resolvent in terms of the eigenpairs of
Q(λ). First, we note that the equations Q(λi)xi = 0 and y∗

iQ(λi) = 0 are equivalent
to (A− λiB)φi = 0 and ψ∗

i (A− λiB) = 0 with

φi =

[
xi

λixi

]
and ψi =

[
yi

λ̄iyi

]
.(3.10)

We assume that M is nonsingular and that all the eigenvalues are semisimple. The
case of infinite and/or defective eigenvalues is considered in section 3.6. Let Λ =
diag(λ1, . . . , λ2n) be the diagonal matrix of eigenvalues of Q(λ) and X = [x1, . . . , x2n],
Y = [y1, . . . , y2n] be the corresponding sets of right and left eigenvectors. As the
eigenvalues of Q(λ) are semisimple, the eigenvalues of A − λB are semisimple too,
and the pencil (A,B) is diagonalizable. From the structure of the right and left
eigenvectors in (3.10) we see that

Φ =

[
X
XΛ

]
and Ψ =

[
Y
Y Λ̄

]

are 2n×2nmatrices containing the corresponding right and left eigenvectors of A−λB.
We normalize Φ and Ψ so that

Ψ∗AΦ = Λ, Ψ∗BΦ = I.

If λ is not an eigenvalue of (A,B) or, equivalently, of Q(λ), then it follows that

(A− λB)−1 = Φ(Λ− λI)−1Ψ∗,

so that, from (3.9),

Q(λ)−1 = X(λI − Λ)−1Y ∗ =

2n∑

i=1

xiy
∗
i

λ− λi
.(3.11)

3.6. Jordan Triples for Q(λ). A Jordan decomposition A = XJX−1 of a sin-
gle matrix A provides a complete and explicit description of a monic polynomial of
degree 1,

P (λ) = λI +A = X(λI + J)X−1.

The matrix J is defined by diag(J1, . . . , Jt), where

Jk =




λk 1 · · · 0

0 λk
. . .

...
...

. . .
. . . 1

0 · · · 0 λk




is mk × mk and m1 + · · · + mt = n. The Jk are referred to as Jordan blocks. The
nonsingular matrix X contains the eigenvectors and generalized eigenvectors of A.
The integer mk is known as a partial multiplicity of λk. A multiple eigenvalue may
have several partial multiplicities. The algebraic multiplicity of an eigenvalue λ is
the sum of its partial multiplicities. The geometric multiplicity of λ is the number of
partial multiplicities.
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The generalization of the Jordan form of a single matrix A to a matrix polynomial
of degree 2 includes a Jordan matrix J of size 2n × 2n that contains the eigenvalues
and their multiplicities and a matrix X of size n×2n that contains the corresponding
Jordan chains. In the rest of the section we give a brief summary of Jordan triples
for matrix polynomials of degree 2 and their properties; for full details see [62, Chap.
7], [91, Chap. 14].

We assume that M is nonsingular. Let J = diag(J1, . . . , Jt), where Jk, k = 1: t,
is a Jordan block of size mk and m1 + · · · + mt = 2n. Partition the n × 2n matrix
X comformably with J , that is, X = [X1, . . . , Xt], where Xk, k = 1: t, is n × mk.
The columns of Xk = [xk

0 , . . . , x
k
mk−1] form a Jordan chain of length mk for Q(λ)

corresponding to the eigenvalue λk. The pair (X, J) is referred to as a Jordan pair

for Q(λ) and is such that [ X
XJ ] is nonsingular and

MXJ2 + CXJ +KX = 0.(3.12)

The left Jordan chains can be obtained from the 2n× n matrix Y defined by

Y =

[
X
XJ

]−1 [
0
I

]
M−1.

When all the eigenvalues are semisimple, the conjugates of the rows of Y form a set
of left eigenvectors for Q(λ). The three matrices (X, J, Y ) form a Jordan triple. X
and Y satisfy the biorthogonality condition [91, p. 499]

[Y JY ]

[
C M
M 0

] [
X
XJ

]
= I,

or, equivalently,

Y CX + YMXJ + JYMX = I.

We also have

XYM = 0 and XJYM = I.(3.13)

The coefficient matrices M , C, and K of Q(λ) can be expressed in terms of the
Jordan triple (X, J, Y ). We have

M = (XJY )−1,

[K C ] = −MXJ2

[
X
XJ

]−1

.

When M is singular, the Jordan pair (X, J) is decomposed into a finite Jordan
pair (XF , JF ) corresponding to the finite eigenvalues and an infinite Jordan pair
(X∞, J∞) corresponding to the infinite eigenvalues, where J∞ is a Jordan matrix
formed of Jordan blocks with eigenvalue λ = 0. If Q(λ) has r finite eigenvalues,
XF ∈ C

n×r, JF ∈ C
r×r, X∞ ∈ C

n×(2n−r), and J∞ ∈ C
(2n−r)×(2n−r). The matrix

[
XF X∞J∞

XFJF X∞

]

is nonsingular and

MXFJ
2
F + CXFJF +KXF = 0, KX∞J

2
∞ + CX∞J∞ +MX∞ = 0.
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As an example, consider the quadratic matrix polynomial

Q(λ) = λ2




1 0 0
0 1 0
0 0 0


+ λ




−2 0 1
0 0 0
0 0 0


+




1 0 0
0 −1 0
0 0 1




for which detQ(λ) = (λ−1)3(λ+1). The eigenvalues are λ1 = −1, λ2 = λ3 = λ4 = 1,
and λ5 = λ6 = ∞. In this case,

XF =




0 0 1 0
1 1 0 1
0 0 0 0


 , JF = diag

(
−1, 1,

[
1 1
0 1

])
,

and

X∞ =




0 −1
0 0
1 1


 , J∞ =

[
0 1
0 0

]
.

In [62, Chap. 7], it was shown that

Q(λ)−1 = [XF X∞ ]

[
λI − JF 0

0 λJ∞ − I

]−1 [
ZF

Z∞

]
,(3.14)

where
[
ZF

Z∞

]
=

[
I 0
0 J∞

] [
XF X∞

MXFJF −KX∞J∞ − CX∞

]−1 [
0
I

]
.(3.15)

Equation (3.14) reduces to (3.11) when M is nonsingular and the eigenvalues are
semisimple.

3.7. Solution of Second-Order Differential Equations. The homogeneous dif-
ferential equation (2.1) (f(t) = 0) or the corresponding λ-matrix Q(λ) is said to be
stable (that is, all solutions q(t) decrease exponentially to zero as t → ∞) if and only
if Re(λ) < 0 for all λ ∈ Λ(Q). If Re(λ) ≤ 0 for all λ ∈ Λ(Q) and if the eigenvalues
λ for which Re(λ) = 0 are semisimple, then (2.1) or Q(λ) is said to be weakly stable

[88] in the sense that the solutions are bounded as t → ∞.
Assume that M is nonsingular and let (X, J, Y ) be a Jordan triple for Q(λ). Using

(3.12) it is easy to verify that

q(t) = XeJta,

where a ∈ C
2n is a vector of arbitrary constants, is the general solution to the homo-

geneous differential equation (2.1). We show by differentiation and direct verification
that

qp(t) = XeJt

∫ t

0

e−JsY f(s)ds

is a particular solution of (2.1). The Leibniz integral rule and the normalization
conditions (3.13) give

q̇p(t) = XJeJt

∫ t

0

e−JsY f(s)ds,

q̈p(t) = XJ2eJt

∫ t

0

e−JsY f(s)ds+XJY f(t).
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Hence

Mq̈p(t) + Cq̇p(t) +Kqp(t) = (MXJ2 + CXJ +KX)eJt

∫ t

0

e−JsY f(s)ds+MXJY f(t)

= f(t),

using (3.12) and (3.13). We conclude that, when M is nonsingular, every solution of
(2.1) can be written in the form

q(t) = XeJt
(
a+

∫ t

0

e−JsY f(s)ds
)
.

When M is singular, the general solution to (2.1) can be given in terms of the
finite Jordan pair (XF , JF ) and infinite Jordan pair (X∞, J∞) of Q(λ) by

q(t) = XF e
JF t
(
a+

∫ t

0

e−JF sZF f(s)ds
)

+

ν−1∑

k=0

X∞J
k
∞Z∞f

(k)(t),

where Z = [ ZF

Z∞
] is defined as in (3.15), ν is such that Jν

∞ = 0, the function f is
assumed to be ν + 1 times continuously differentiable, and a is an arbitrary vector.
For more details on how to derive the general solution of pth-order linear differential
equations we refer to [62, Chap. 8].

3.8. Self-Adjoint Q(λ). We say that the λ-matrix Q(λ) is self-adjoint if Q(λ) =
Q(λ̄)∗ for all λ ∈ C or, equivalently, if M , C, and K are Hermitian.

3.8.1. Spectrum Location. The eigenvalues of a self-adjoint Q(λ) are real or
arise in complex conjugate pairs:

Q(λ)x = 0 ⇐⇒ x∗Q(λ̄) = 0.

Hence x is a right eigenvector of λ and a left eigenvector of λ̄. It follows that if the
matrices are real, then the sets of left and right eigenvectors coincide.

Let m(x) = x∗Mx, c(x) = x∗Cx, and k(x) = x∗Kx, where x ∈ C
n is nonzero. We

assume that M > 0 so that m(x) > 0. If x is an eigenvector, the roots of x∗Q(λ)x = 0
are given by

λ =
(

− c(x) ±
√
c(x)2 − 4m(x)k(x)

)/
2m(x),(3.16)

and in general only one of them is an eigenvalue of Q(λ).
We observe that for C > 0 and K > 0, Re(λ) < 0, so all the eigenvalues lie in the

left half-plane and the system is stable. This is, for instance, the case for the system
describing the free vibrations of the nuclear plant problem in Figure 2.3: the matrices
M , C, and K are symmetric positive definite and all the eigenvalues have negative
real part (see the left side of Figure 3.1).

Following Lancaster [88], we introduce two classes of Hermitian QEPs correspond-
ing to the cases Λ(Q) ⊂ R and Λ(Q) ∩ R = ∅. A QEP is said to be hyperbolic if
c(x)2 > 4m(x)k(x) for all nonzero x ∈ C

n and quasi-hyperbolic if c(x)2 > 4m(x)k(x)
for all eigenvectors of Q(λ) (but not necessarily all nonzero x ∈ C

n). Immediately,
it follows from (3.16) that hyperbolic and quasi-hyperbolic QEPs have real eigenval-
ues. These QEPs have been thoroughly analyzed [43], [44], [99]. In particular, Duffin
showed that the eigenvalues of hyperbolic QEPs are not only real but also semisimple.
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A QEP is said to be elliptic if c(x)2 < 4m(x)k(x) for all nonzero x ∈ C
n or,

equivalently [88], if c(x)2 < 4m(x)k(x) for all eigenvectors of Q(λ). There is no
notion of quasi-elliptic in this case. It follows from (3.16) that elliptic QEPs have
nonreal eigenvalues.

3.8.2. Linearization. We now consider linearizations for Hermitian QEPs. In
many engineering applications, M > 0 or K > 0. In this case we have the choice
between an unsymmetric linearization (A,B) with A non-Hermitian and B Hermitian
positive definite and a symmetric linearization with A and B Hermitian but indefinite.

To be more specific, if M is definite, then (3.6) with N = ±I gives a pair (A,B)
with A non-Hermitian and B Hermitian definite; ifK is definite an analogous property
holds for (3.7). The symmetry of Q(λ) is not preserved.

If K (respectively, M) is nonsingular, we obtain a symmetric linearization by
taking N = −K in (3.6) (respectively, N = M in (3.7)). Symmetry alone does not
guarantee that the eigenvalues are real and that the pencil is diagonalizable by con-
gruence transformations. Veselić [147] shows that the overdamping condition (3.17)
is equivalent to the definiteness of the symmetric linearization obtained from L1 or
L2. Hence, for overdamped problems (see section 3.9), the symmetric linearization
fully reflects the spectral properties of the QEP (real eigenvalues).

3.8.3. Self-Adjoint Triple, Sign Characteristic, and Factorization. There exist
many interesting results on self-adjoint matrix polynomials. Their derivation involves
matrix analysis in indefinite scalar product spaces [63], [84]. For self-adjoint Q(λ),
there exist particular Jordan triples (X, J, Y ) called self-adjoint triples. For such
triples, there exists a simple relation between X and Y :

Y ∗ = XPǫ,J , X∗ = P−1
ǫ,J Y,

where Pǫ,J is a nonsingular matrix whose entries are 0, 1, or −1 and depend on an
invariant called the sign characteristic of Q(λ) and the Jordan blocks in J [62].

Also, if M > 0, Q(λ) can always be factorized into a pair of linear factors [62,
Thm. 11.2]

Q(λ) = M(λI − U)(λI − V ),

with V = U∗ when Q(λ) is elliptic [91, sect. 13.2].

3.9. Overdamped Systems. In structural mechanics, the differential system
(2.1), where M , C, and K are real symmetric, M > 0, C > 0, and K ≥ 0, is
said to be overdamped when the overdamping condition

min
||x||2=1

[
(x∗Cx)2 − 4(x∗Mx)(x∗Kx)

]
> 0(3.17)

is satisfied [43]. Note that if a system is overdamped, the corresponding QEP is
hyperbolic. In this case, it is easy to verify from (3.16) that all the eigenvalues are
not only real but also nonpositive. This ensures that the general solution to the
equation of motion (2.1) is a sum of bounded exponentials. Lancaster [87, sect. 7.6]
proves several other properties of overdamped problems:

• there is a gap between the n largest eigenvalues (the primary eigenvalues)
and the n smallest eigenvalues (the secondary eigenvalues);

• there are n linearly independent eigenvectors associated with the primary
eigenvalues and likewise for the secondary eigenvalues;
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Fig. 3.2 An n-degrees-of-freedom damped mass-spring system.

• Q(S) in (3.1) has at least two real solvents, having as their eigenvalues the
primary eigenvalues and the secondary eigenvalues, respectively.

As an illustration, we consider the connected damped mass-spring system illus-
trated in Figure 3.2. The ith mass of weight mi is connected to the (i+ 1)st mass by
a spring and a damper with constants ki and di, respectively. The ith mass is also
connected to the ground by a spring and a damper with constants κi and τi, respec-
tively. The vibration of this system is governed by a second-order differential equation
of the form (2.1), where the mass matrix M = diag(m1, . . . ,mn) is diagonal and the
damping matrix C and stiffness matrix K are symmetric tridiagonal and defined by

C = P diag(d1, . . . , dn−1, 0)PT + diag(τ1, . . . , τn),

K = P diag(k1, . . . , kn−1, 0)PT + diag(κ1 . . . , κn),

with P = (δij − δi,j+1), where δij is the Kronecker delta.
In the following example we take all the springs (respectively, dampers) to have the

same constant κ (respectively, τ), except the first and last ones for which κ1 = κn = 2κ
and τ1 = τn = 2τ , and we take mi ≡ 1. Then

M = I, C = τ tridiag(−1, 3,−1), K = κ tridiag(−1, 3,−1).

We take n = 50 degrees of freedom and first choose κ = 5 and τ = 3. The problem
is not overdamped, but, as M > 0, C > 0, and K > 0, the system is stable. All the
eigenvalues lie in the left half-plane as shown in Figure 3.3. Second, we take κ = 5 and
τ = 10. Since λmin(C)2 − 4‖M‖2‖K‖2 = 1.9 × 10−2 > 0, the system is overdamped,
and so all the eigenvalues are real and nonpositive. Figure 3.4 displays the eigenvalue
distribution, with the characteristic gap between the n smallest eigenvalues and the
n largest.

3.10. Gyroscopic Systems. The λ-matrix associated with a gyroscopic system
is of the form

G(λ) = λ2M + λC +K(3.18)

with M and K Hermitian, M > 0, and C = −C∗ skew-Hermitian.
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Fig. 3.3 Eigenvalues in the complex plane of the QEP for the nonoverdamped mass-spring system
with n = 50.
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Fig. 3.4 Eigenvalue distribution of the QEP for the overdamped mass-spring system with n = 50.
Now all the eigenvalues are real, so they are plotted against the index rather than as points
in the complex plane.

3.10.1. Spectrum Location and Stability. As

G(λ)∗ = G(−λ̄),(3.19)

the distribution of the eigenvalues of G(λ) in the complex plane is symmetric with
respect to the imaginary axis. If x is a right eigenvector associated with the eigenvalue
λ, then x is a left eigenvector associated with the eigenvalue −λ̄.
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Fig. 3.5 A two-degrees-of-freedom model of a shaft rotating with angular velocity Ω.

If M , C, and K are real, then to the property (3.19) is added the property

G(λ)T = G(−λ).

In this case, the eigenvalues of G(λ) have Hamiltonian properties; that is, they are
symmetrically placed with respect to both the real and imaginary axes. Immediately
we conclude that a necessary but not sufficient condition for a real gyroscopic system

Mq̈(t) + Cq̇(t) +Kq(t) = 0(3.20)

to be stable is that all its eigenvalues are on the imaginary axis.
Let

Q(λ) = −G(−iλ) = λ2M + λ(iC) −K.

Note that M∗ = M > 0, (iC)∗ = iC, and K∗ = K so that Q(λ) is self-adjoint. The
case K > 0 is well understood [44], [87]. In this case, the discriminant of x∗Q(λ)x is
positive for all nonzero x ∈ C

n, and thus Q(λ) is hyperbolic (see section 3.8). The
eigenvalues of Q(λ) are real and semisimple; that is, the eigenvalues of G(λ) are purely
imaginary and semisimple. Hence, the system (3.19) is weakly stable.

When K < 0, (3.20) corresponds to a system in motion about an unstable equi-
librium position. If C is real, and hence skew-symmetric, there is a nonzero vector
x0 such that x∗

0Cx0 = 0. The discriminant of x∗
0Q(λ)x0 is 4(x∗

0Mx0)(x
∗
0Kx0) < 0 so

that Q(λ) is not hyperbolic. Hence, the eigenvalues of G(λ) are not necessarily purely
imaginary and semisimple, and the system (3.20) is not guaranteed to be weakly
stable.

Some inequalities involving the matrices M , C, and K have been derived to
characterize cases where Q(λ) is quasi-hyperbolic and the system (3.20) is weakly
stable [10]. Strong stability, which refers to systems that are stable and for which
all neighboring systems are stable, has been investigated [89]. In many engineering
applications the gyroscopic systems depend on a parameter, and stability criteria for
these types of problems have also been derived [76].

As an illustration we consider the two-degrees-of-freedom gyroscopic system con-
taining a mass and four springs illustrated in Figure 3.5. The equation of motion in
the rotating reference axes can be written in matrix form as

[
ẍ
ÿ

]
+

[
0 −2Ω

2Ω 0

] [
ẋ
ẏ

]
+

[
kx/m−Ω2 0

0 ky/m−Ω2

] [
x
y

]
= 0,(3.21)
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Im

Re

Fig. 3.5 Location of the spectrum of the gyroscopic system (3.21) as the gyroscopic parameter Ω
increases.

where m is the mass, kx, ky are the stiffnesses of the springs, and Ω is the rotation
rate of the system. It is well known that the rotation rate Ω, also called the gyroscopic
parameter, characterizes the stability for this class of system. The eigenvalues of the
corresponding QEP are given by the zeros of

detQ(λ) = λ4 + λ2

(
2Ω2 +

kx + ky

m

)
+
kxky

m2
−Ω2 kx + ky

m
+Ω4 = 0,

that is,

λ = ±
1

2

(
−

2(kx + ky)

m
− 4Ω2 ± 2

(
(kx − ky)2

m2
+ 8Ω2 kx + ky

m

)1/2
)1/2

.

We assume that kx ≤ ky. The two pairs of eigenvalues will be purely imaginary for

0 < Ω <
√
kx/m and Ω >

√
ky/m. As shown in Figure 3.5, as Ω increases from 0

to
√
kx/m, the pair of eigenvalues closer to 0 (represented by two black dots in the

figure for Ω = 0) coalesces at the origin for Ω =
√
kx/m and splits along the real

axis for
√
kx/m < Ω <

√
ky/m, resulting in instability. However, due to gyroscopic

effects, the eigenvalues once again coalesce at the origin for the second critical value
of Ω, that is, Ω =

√
ky/m. For Ω >

√
ky/m the two pairs of eigenvalues are purely

imaginary and the system is said to be restabilized.

3.10.2. Linearization. As mentioned previously, the eigenvalues of a real gyro-
scopic system occur in quadruples (λ, λ̄,−λ,−λ̄), possibly collapsing to real or imag-
inary pairs or a single zero eigenvalue. A linearization A − λB reflects this property
if one of the matrices A or B is Hamiltonian and the other is skew-Hamiltonian. We
recall that the matrix A is Hamiltonian if (AJ)T = AJ , where

J =

[
0 I

−I 0

]
,
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and the matrix B is skew-Hamiltonian if (BJ)T = −BJ . A skew-Hamiltonian/Hamil-
tonian linearization can be obtained from the first companion form L1, and a Hamil-
tonian/skew-Hamiltonian linearization can be obtained from the second companion
form L2 by setting N = −K in (3.6) and N = M in (3.7) and multiplying these linear
forms on the right by the anti-identity matrix

[
0 I
I 0

]
.

This results in

L3:

[
K 0
C K

]
− λ

[
0 K

−M 0

]
, L4:

[
0 −K
M 0

]
− λ

[
M C
0 M

]
.(3.22)

If M is singular, L3 is the linearization to use, but if K is singular, L4 is preferred.

4. Perturbation Analysis. The importance of condition numbers for character-
izing the sensitivity of solutions to problems and backward errors for assessing the
stability and quality of numerical algorithms is widely appreciated. The forward er-
ror, condition number, and backward error are related by the inequality (correct to
first order in the backward error)

forward error ≤ condition number × backward error.(4.1)

In the following, ∆Q(λ) denotes the perturbation

∆Q(λ) = λ2∆M + λ∆C +∆K

of Q(λ).

4.1. Conditioning. Let λ be a nonzero simple and finite eigenvalue of a regular
Q(λ) with corresponding right eigenvector x and left eigenvector y. A normwise
condition number of λ can be defined by

κ(λ) = lim
ǫ→0

sup

{
|∆λ|

ǫ|λ|
:
(
Q(λ+∆λ) +∆Q(λ+∆λ)

)
(x+∆x) = 0,

‖∆M‖ ≤ ǫα2, ‖∆C‖ ≤ ǫα1, ‖∆K‖ ≤ ǫα0

}
,(4.2)

where the αk are nonnegative parameters that allow freedom in how perturbations are
measured—for example, in an absolute sense (αk ≡ 1) or a relative sense (α2 = ‖M‖,
α1 = ‖C‖, α0 = ‖K‖). By setting, for instance, α2 = 0 we can force ∆M = 0 and
thus keep M unperturbed. In [140] it is shown that

κ(λ) =
(|λ|2α2 + |λ|α1 + α0)

|λ| |y∗Q′(λ)x|
‖y‖ ‖x‖.

Condition numbers κ(λ) are used in eigenstructure assignment problems arising
in control design for a second-order system [109]. To measure the robustness of the
system, one can take as a global measure

ν2 =

2n∑

k=1

ω2
kκ(λk)2,
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where the ωk are positive weights. The control design problem is to select the feedback
gains FC and FK in (2.8) to assign a given set of 2n nondefective eigenvalues to the
second-order closed loop system and to minimize ν2.

A normwise condition number for the eigenvector x corresponding to the simple
eigenvalue λ can be defined by

κλ(x) = lim
ǫ→0

sup

{
‖∆x‖

ǫ‖x‖
:
(
Q(λ+∆λ) +∆Q(λ+∆λ)

)
(x+∆x) = 0,

g∗Q′(λ)x = g∗Q′(λ)(x+∆x) ≡ 1,(4.3)

‖∆M‖ ≤ ǫα2, ‖∆C‖ ≤ ǫα1, ‖∆K‖ ≤ ǫα0

}
,

where we use a linear normalization based on a constant vector g. The normalization
in the definition is important, as an eigenvector corresponding to a simple λ is unique
only up to a scalar multiple. We can show that for sufficiently small ∆M , ∆C, and
∆K there exists a unique ∆x which can be expressed to first order as

∆x = −V (W ∗Q(λ)V )−1W ∗(∆Q(λ))x,

where the full rank matrices V,W ∈ C
n×(n−1) are chosen so that g∗Q′(λ)V = 0 and

W ∗Q′(λ)x = 0. As a consequence,

κλ(x) = ‖V (W ∗Q(λ)V )−1W ∗‖(|λ|2α2 + |λ|α1 + α0).(4.4)

The matrices V and W can be explicitly constructed via QR factorizations [72], so
κλ(x) in (4.4) is readily computed.

Note that for the perturbation analysis of QEPs it can be more convenient to use
the homogeneous form

Q(α, β) = α2M + αβC + β2K,

where an eigenvalue is now represented by a pair (α, β) [39]. Infinite eigenvalues
correspond to nonzero pairs (α, β) for which β = 0. With this approach, condition
numbers for the eigenvalues can be derived without assuming that the eigenvalue is
finite. Moreover, by working in projective spaces the problem of choosing a normal-
ization for the eigenvectors is avoided.

4.2. Backward Error. A natural definition of the normwise backward error of an
approximate eigenpair (x̃, λ̃) of Q(λ) is

η(x̃, λ̃) := min{ ǫ : (Q(λ̃) +∆Q(λ̃))x̃ = 0,(4.5)

‖∆M‖ ≤ ǫα2, ‖∆C‖ ≤ ǫα1, ‖∆K‖ ≤ ǫα0 },

and the backward error for an approximate eigenvalue λ̃ is given by

η(λ̃) := min
x̃6=0

η(x̃, λ̃).(4.6)

In [140] it is shown that η(x̃, λ̃) is the scaled residual

η(x̃, λ̃) =
‖Q(λ̃)x̃‖

(|λ̃|2α2 + |λ̃|α1 + α0)‖x̃‖
,(4.7)
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and if λ̃ is not an eigenvalue of Q(λ), then

η(λ̃)−1 = (|λ̃|2α2 + |λ̃|α1 + α0)‖Q(λ̃)−1‖.(4.8)

Ideally, a numerical method will provide computed eigenpairs, all of whose backward
errors are of the order of the unit roundoff; such a method is called numerically stable.

In most of the numerical methods used to solve the QEP an approximation of x
can be recovered from either the first n components or the last n components of a
computed 2n-vector ξ̃T = (x̃T

1 , x̃
T
2 ) ≈ (x̃T , λx̃T ). It is often not appreciated that in

finite precision arithmetic these two choices are not equivalent (see the example in
section 5.1). One approach, adopted by MATLAB 6’s polyeig function for solving
the polynomial eigenvalue problem and illustrated in Algorithm 5.1 below, is to use
whichever part of ξ̃ yields the smallest backward error (4.7).

4.3. Pseudospectra. Pseudospectra are an established tool for gaining insight
into the global sensitivity of the eigenvalues of a matrix to perturbations [142], [143]
(see the pseudospectra homepage at http://www.comlab.ox.ac.uk/pseudospectra).
The use of pseudospectra is widespread, with applications in areas such as fluid me-
chanics, Markov chains, and control theory. Most of the existing work is for a single
matrix, but the theory can be extended to matrix polynomials [141]. For the QEP,
we define the ǫ-pseudospectrum by

Λǫ(Q) =
{
λ ∈ C : (Q(λ) +∆Q(λ))x = 0 for some x 6= 0 and ∆Q(λ)

with ‖∆M‖ ≤ ǫα2, ‖∆C‖ ≤ ǫα1, ‖∆K‖ ≤ ǫα0

}
.(4.9)

In [141] the following equivalent expressions were proved:

Λǫ(Q) =
{
λ ∈ C : ‖Q(λ)−1‖ ≥ (ǫ (|λ|2α2 + |λ|α1 + α0))

−1
}

= {λ ∈ C : η(λ) ≤ ǫ },

the second equality following from (4.8). Λǫ(Q) can also be related to stability radii
[141], which are widely used in control theory to measure the size of the smallest
perturbation that changes a stable system into an unstable one. For the computation
of Λǫ(Q) we refer to [141], where several numerical methods are proposed.

As an illustration, we consider the eight-degrees-of-freedom (n = 8) nuclear power
plant system illustrated in Figure 2.3. We use the data given in [79]. Since stability
of the system is the key issue, we are interested in the location of the eigenvalues of
the perturbed QEP

λ2(M +∆M)x+ λ(C +∆C)x+ (K +∆K)x = 0

that are the closest to the imaginary axis. For our computation, we consider relative
perturbations so that α2 = ‖M‖2 ≈ 2 × 108, α1 = ‖C‖2 ≈ 4 × 1010, and α0 =
‖K‖2 ≈ 2 × 1013. Figure 4.1 is a plot of the ǫ-pseudospectra in the form known as a
spectral portrait: the inverse of the scaled resolvent norm, r(z) =

(
(|z|2α2 + |z|α1 +

α0)‖Q(z)−1‖2

)−1
, is evaluated on a grid of points z in the complex plane, a different

color is assigned to each value of r(z), and the resulting array is sent to a color plotter.
The eigenvalues of the unperturbed QEP, marked by dots, all lie in the left half-plane,
so the unperturbed system is stable. The plot shows that relative perturbations of
order 10−10 (corresponding to the yellow region of the plot) can move the eigenvalues
to the right half-plane, making the system unstable.
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Fig. 4.1 Spectral portrait of the eight-degrees-of-freedom nuclear power plant system illustrated in
Figure 2.3. The bar shows the mapping of colors to log10 of the reciprocal of the scaled
resolvent norm.

5. Numerical Methods for Dense Problems. The standard approach for the
numerical solution of the SEP and the GEP is to reduce the matrices involved to
some simpler form that reveals the eigenvalues, for instance, the Schur form for a
single matrix A and the generalized Schur form for a pair (A,B). Unfortunately,
these canonical forms do not generalize to λ-matrices of degree greater than 1.

Numerical methods break into two types: those that solve the QEP directly and
those that work with the linearized form and compute its generalized Schur decom-
position or some simple forms revealing eigenvalues and eigenvectors directly. Most
of the numerical methods that deal directly with the QEP are variants of Newton’s
method. These Newton’s variants compute one eigenpair at a time and converge as
long as the starting guess is close enough to the solution, but in practice even for a
good initial guess there is no guarantee that the method will converge to the desired
eigenvalue. We refer to Kublanovskaya [85], Peters and Wilkinson [117], and Ruhe
[122] and the references therein for a thorough survey of these techniques. Several au-
thors have noted that the factorization (3.3) provides a way to solve the QEP working
entirely in terms of n×n matrices: compute a solvent S of Q(S) = MS2+CS+K = 0
and then find the eigenvalues of the pencil λM + MS + C and the matrix S. Two
obstacles stand in the way of this approach. First, a solvent may not exist, and while
existence results are available (see references in section 3.2), their conditions are not
easy to check in practice. Second, computation of a solvent is a nontrivial task—one
possibly more difficult than that of solving the QEP. Nevertheless, Higham and Kim
[74] showed that by using a Bernoulli iteration to compute solvents this technique can
be competitive with the others for certain classes of problems, including overdamped
problems.

In the rest of this section, we concentrate on methods that compute all the eigen-
values and eigenvectors of Q(λ) through one of its linearizations. A drawback of these
methods is that they solve a problem of twice the dimension of the original one.
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Table 5.1 Nuclear power plant problem. Backward errors of the computed eigenpairs corresponding
to the smallest and largest eigenvalues in modulus.

|λ| ηGEP (ξ, λ) η(ξ1, λ) η(ξ2, λ)

17.7 1e-17 3e-5 6e-8
361 2e-17 2e-11 2e-11

5.1. General QEPs. Let A−λB be a linearization of Q(λ). A numerically stable
reduction is obtained by computing the generalized Schur decomposition

W ∗AZ = S, W ∗BZ = T,(5.1)

where W and Z are unitary and S and T are upper triangular. If Q(λ) is regular,
then Λ(Q) = {sii/tii}, with the convention that sii/tii = ∞ when tii = 0. For real
pairs (A,B) there is a real generalized Schur decomposition with Q and Z orthogonal
and T upper quasi-triangular. We obtain the following algorithm for the numerical
solution of the QEP.

Algorithm 5.1.

Form (A,B) such that A− λB is a linearization of Q(λ).
Compute the generalized Schur decomposition
S = W ∗AZ, T = W ∗BZ.
For k = 1: 2n

λk = skk/tkk

Solve (S − λkT )φ = 0, ξ = Zφ.
ξ1 = ξ(1:n), ξ2 = ξ(n+ 1: 2n)
r1 = Q(λk)ξ1/‖ξ1‖, r2 = Q(λk)ξ2/‖ξ2‖

xk =

{
ξ(1:n) if ‖r1‖ ≤ ‖r2‖,
ξ(n+ 1: 2n) otherwise.

end
This algorithm computes all the eigenpairs. It chooses the part of the eigenvector

ξ of A− λB that yields the smallest backward error for the QEP (see section 4.2).
The QZ algorithm [105], [64] computes the decomposition (5.1) and handles the

case of infinite eigenvalues well [148]. The QZ algorithm is numerically stable for
the solution of the GEP but it is not stable for the solution of the QEP as it does
not exploit the special structure of the problem [140]. To illustrate, we consider
the QEP associated with the nuclear power system. We use the second companion
linearization (3.6) with N = I and the qz function of MATLAB 6. Table 5.1 gives
the resulting backward errors for the smallest and largest eigenvalues in magnitude
(the unit roundoff is of order 10−16), using the 2-norm. Here,

ηGEP (ξ, λ) = ‖(A− λB)ξ‖/((‖A‖ + |λ|‖B‖)‖ξ‖)

is the backward error of the GEP solution and, as expected, is of the order of the
unit roundoff because the QZ algorithm is a backward stable algorithm for the so-
lution of the GEP. The last two columns of the table display the backward errors
corresponding to the two possible choices in recovering the eigenvector of the QEP
from the eigenvector of the GEP: ξ1 = ξ(1:n), ξ2 = ξ(n + 1: 2n). For the smallest
eigenvalue in modulus, the second choice ξ2 yields a smaller backward error. This
example shows that even if the algorithm chooses the part of the vector ξ that yields
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the smallest backward error, these backward errors can be much larger than the unit
roundoff. Even though backward stability is not guaranteed, Algorithm 5.1 is the
preferred method if M , C, and K have no particular structure and are not too large.

5.2. Symmetric Linearization. We now assume that the matrices M , C, and K
are symmetric and that A− λB is a symmetric linearization of Q(λ). Algorithm 5.1
is not attractive, because the QZ algorithm does not respect the symmetry of (A,B).

When B is definite we can compute a Cholesky factorization B = LLT , with
L lower triangular, and reduce the symmetric GEP Aξ = λBξ to the symmetric
SEP L−1AL−Tφ = λφ, φ = LT ξ, which can be solved with the symmetric QR
algorithm [64] or any other eigensolver for symmetric matrices. This approach can
be unstable when B is ill conditioned, but a few steps of iterative refinement can be
used to improve the stability and accuracy [35], [139]. Using complete pivoting in the
Cholesky factorization improves the stability properties [35].

If the system is overdamped, the pair (A,B) is symmetric definite and the Jacobi
algorithm of Veselić and Slapničar [130], [147] for definite matrix pairs can be used.

If the pencil is indefinite, the HR [21], [23], LR [124], and Falk–Langemeyer
[45] algorithms can be employed in order to take advantage of the symmetry of the
GEP, but all these methods can be numerically unstable and can even break down
completely. There is a need to develop efficient and reliable numerical methods for
the solution of symmetric indefinite GEPs.

5.3. Hamiltonian/Skew-Hamiltonian Linearization. Now we assume that the
matrices M and K are real symmetric and C = −CT is skew-symmetric. We recall
that such QEPs come from gyroscopic systems. Let (A,B) be a Hamiltonian/skew-
Hamiltonian or skew-Hamiltonian/Hamiltonian linearization ofQ(λ). Instead of using
the QZ algorithm we can reduce the pencil (A,B) to a Hamiltonian eigenvalue problem
and then use a structure-preserving algorithm for real Hamiltonian matrices, such as
the one derived by Benner, Mehrmann, and Xu [17] or the square-reduced algorithm
of Van Loan [146]. These two algorithms involve considerably less computation than
the QZ and QR algorithms. The structure is preserved by the use of symplectic
orthogonal transformations.

The reduction of a Hamiltonian/skew-Hamiltonian or skew-Hamiltonian/Hamil-
tonian GEP to a Hamiltonian SEP exists as long as the skew-Hamiltonian matrix
is nonsingular. For instance, we assume that A − λB is the Hamiltonian/skew-
Hamiltonian linearization L4 in (3.22). The reduction to a Hamiltonian eigenproblem
uses the fact that when the skew-Hamiltonian matrix B is nonsingular, it can be
written in factored form as

B = B1B2 =

[
I 1

2C
0 M

] [
M 1

2C
0 I

]
with BT

2 J = JB1.(5.2)

Then H = B−1
1 AB−1

2 is Hamiltonian. The square-reduced algorithm [146] computes
the eigenvalues µ of the skew-symmetric matrix H2 using stable structure-preserving
transformations. The eigenvalues of H are recovered by taking the square roots of
µ. As a consequence, there is a loss of accuracy. The algorithm described in [17] is
more expensive in both computational cost and workspace but does not suffer from
this loss of accuracy in the eigenvalue computation.

To illustrate, we consider a band traveling at speed v between two fixed supports
as a model of a band saw or magnetic tape (see Figure 5.1). The band’s transverse
displacement with no external excitation force is described by the nondimensional
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u(x, t)

Translation v

ττ

x

Fig. 5.1 A schematic view of a traveling band.

equation

[
∂2

∂t2
+ 2v

∂2

∂x∂t
+ (κv2 − τ)

∂2

∂x2
+

∂4

∂x4

]
u(x, t) = 0, x ∈ [0, 1],

where τ is the dimensionless tension and κ ∈ [0, 1] is a constant depending on the
pulley mounting system of the band. Approximating

u(x, t) =

n∑

k=1

qk(t) sin(kπx)

and applying the Galerkin method we obtain a second-order differential equation

Mq̈(t) + Cq̇(t) +Kq(t) = 0,(5.3)

where q(t) = [ q1(t), . . . , qn(t) ]
T
, M = 1

2In, K = diag
1≤j≤n

(
j2π2(j2π2 + τ − κv2)/2

)
,

and

C = −CT = (cij) with cij =





4ij

j2 − i2
v if i+ j is odd,

0 otherwise.

We took n = 20 and set the band parameters as follows:

v = 10, κ = 0.8, τ = 77.9

so that as M > 0 and K > 0 all the eigenvalues are purely imaginary and the
gyroscopic system is stable (see section 3.10).

Figure 5.2 compares the spectrum of the QEP associated with (5.3) when com-
puted by the MATLAB 6 function polyeig and our implementation of Van Loan’s
square-reduced algorithm [146]. Not surprisingly, the eigenvalues computed by
polyeig (which uses a companion linearization and the QZ algorithm) do not have
a Hamiltonian structure, and some of them have positive real part, suggesting incor-
rectly that the system described by (5.3) is unstable. In contrast, Van Loan’s square-
reduced algorithm together with the Hamiltonian/skew-Hamiltonian linearization pre-
serves the Hamiltonian structure, yielding pure imaginary computed eigenvalues that
confirm the system’s stability.

5.4. Sensitivity of the Linearization. Condition numbers and backward error
are related to the accuracy of the solutions by the inequality (4.1). Most of the
algorithms applied to a GEP form of the QEP do not preserve the structure. Hence
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Fig. 5.2 Spectrum of the moving band illustrated in Figure 5.1. polyeig uses a companion lineariza-
tion and the QZ algorithm. srmh uses a Hamiltonian linearization and the square-reduced
algorithm for the Hamiltonian eigenproblem.

it is the condition number of the GEP form that is relevant. The normwise condition
number of a simple and finite eigenvalue of the GEP

(A− λB)ξ = 0, χ∗(A− λB) = 0(5.4)

given in [72] is

κGEP (λ) =
‖χ‖‖ξ‖(‖A‖ + |λ|‖B‖)

|λ||χ∗Bξ|
.(5.5)

The accuracy with which the eigenvalue λ is computed is affected by the choice of the
linearization A− λB.

To be more specific, we consider the linearizations L1, L2, and L4 in (3.6), (3.22)
with N = I. We consider the QEP derived from the mass-spring system described
in section 3.9 with n = 10, τ = 1000, and κ = 5. The system is overdamped, with
eigenvalues in the range [−5 × 103,−5 × 10−3]. For each linearization, we compute
κGEP (λ) for λ = λ10 and λ = λ11, where the eigenvalues are ordered so that λi >
λi+1. The two eigenvalues λ10 and λ11 appear on either side of a large gap in the
spectrum of the kind seen in Figure 3.4. We used the Symbolic Toolbox of MATLAB to
compute the exact solution of (5.4) and the QZ algorithm to compute the approximate

eigenvalues λ̂10 and λ̂11. The results, displayed in Table 5.2, show that for the same
eigenvalue λ, the condition numbers are quite different for the different linearizations.
Large condition numbers affect the relative error |λ̂−λ|/|λ| as suggested by the bound
(4.1). Tisseur showed [140] that given some information on ‖M‖, ‖C‖, and ‖K‖ and
on the structure of ξ and χ, it is possible to compare the condition numbers of different
linearizations and identify which formulations are preferred for the large and the small
eigenvalues, respectively. These results are of practical relevance, as in applications
it is often only the eigenpairs corresponding to small or large eigenvalues that are of
interest.
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Table 5.2 Comparison, for three different linearizations, of the condition number and relative error
of a small and a large eigenvalue in absolute value of the QEP associated with the mass-
spring problem.

Type of λ = −8e−3

linearization κ(λ) |λ̂ − λ|/|λ|

L1 6e5 7e−12

L2 6e0 6e−16

L4 8e2 2e−16

Type of λ = −1e3

linearization κ(λ) |λ̂ − λ|/|λ|

L1 6e0 8e−16

L2 5e6 2e−11

L4 1e9 1e−11

6. Iterative Methods. Methods for dense problems usually destroy any sparsity
in A and B. This may lead to large memory requirements and high execution times
for QEPs of large dimension. In this section we discuss iterative methods for finding
eigenpairs of Q(λ) when n is too large to use the methods of section 5. Fortunately, in
many large-scale applications, only a few eigenpairs are required, so that computation
time and storage can be reduced. For large problems M , C, and K are usually
sparse and special data structures are used for their storage. This limits the type
of operations one can perform efficiently to matrix-vector products and sparse direct
and preconditioned iterative linear solvers. All the methods discussed in this section
require the solution of large-scale linear systems, algorithms for which were reviewed
in [11], [41], and [42].

Most algorithms for large QEPs proceed by generating a sequence of subspaces
{Kk}k≥0 that contain increasingly accurate approximations to the desired eigenvec-
tors. A projection method is used to extract approximate eigenpairs from the largest
Kk.

Let L(λ) ∈ C
N×N be either Q(λ) (N = n) or one of its linearizations A − λB

(N = 2n). The projection method requires a matrix L(λ) and a subspace Kk of
dimension k ≤ N containing an approximate eigenspace of L(λ). It proceeds as
follows:

1. Let the columns of V ∈ C
N×k be a basis for Kk and let W ∈ C

N×k be such
that W ∗V = I. (V and W are biorthogonal.)

2. Form Lk = W ∗L(λ)V (projection step).

3. Compute the m desired eigenpairs (λ̃j , ξj) of Lk, j = 1:m ≤ k.

4. Return (λ̃j , V ξj) as approximate eigenpairs of L(λ) (Ritz pairs).
If the approximate eigenvectors of L(λ) and therefore those of Q(λ) are not satisfac-
tory, they can be reused in some way to restart the projection method.

Let Lk be the subspace spanned by the columns of W . If V is orthonormalized, we
can take W = V and therefore Lk = Kk. In this case Lk is the orthogonal projection
of L(λ) onto Kk. When W 6= V , Lk is the oblique projection of L(λ) onto Kk along
Lk.

The projection method approximates an eigenvector x of L(λ) by a vector x̃ =

V ξ ∈ Kk with corresponding approximate eigenvalue λ̃. As W ∗L(λ̃)x̃ = W ∗L(λ̃)V ξ =

Lk(λ̃)ξ = 0, the projection method forces the residual r = L(λ̃)x̃ to be orthogonal
to Lk. This is referred to as the Galerkin condition when Kk = Lk and the Petrov–
Galerkin condition otherwise. When L(λ) is symmetric the projection method is
called the Rayleigh–Ritz procedure.

Usually, the projection method does a better job of estimating exterior eigenvalues
of L(λ) than interior eigenvalues. Prior to any computation one might want to apply
spectral transformations that map the desired eigenvalues to the periphery of the
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spectrum. For instance, if L(λ) = Q(λ), the inverted QEP is

(µ2K + µC +M)x = 0, where µ = 1/λ = f(λ),

assuming that 0 is not an eigenvalue of Q(λ). This invert spectral transformation is
used if eigenvalues with smallest modulus are wanted. The shift-and-invert spectral
transformation f(λ) = 1/(λ − σ) and the Cayley spectral transformation f(λ) =
(λ− β)/(λ− σ) (for β 6= σ), used to approximate eigenvalues λ closest to the shift σ,
are other possible spectral transformations that are discussed in [7], for example.

In the next section we discuss methods that compute the subspaces Kk and Lk,
beginning with the case where L(λ) is linear, i.e., L(λ) = A− λB, and moving to the
case where L(λ) = Q(λ), i.e., the QEP is tackled directly in its original form.

6.1. Krylov Subspace Methods. When L(λ) = A− λB is linear, Kk and Lk are
often chosen to be Krylov subspaces of the form

Kk(S, v) = span{v, Sv, S2v, S3v, . . . , Sk−1v},(6.1)

where v is a given vector and S is a single matrix (for instance, S = B−1A) containing
the desired eigenvalues in the exterior of its spectrum. This leads to the Lanczos
method when S is Hermitian and the Arnoldi or non-Hermitian Lanczos method when
S is non-Hermitian. Our aim is to explain how existing Krylov subspace methods can
be applied to the QEP. Good background references on Krylov subspace methods are
[7], [41], [94], [125].

6.1.1. Arnoldi Method and Two-Sided Lanczos Method for General QEPs.

Let A−λB be a linearization of Q(λ). The Arnoldi method [4] for the GEP A−λB is
an orthogonal projection method onto Kk(S, v), where S = B−1A if B is nonsingular
or S = A−1B if A is nonsingular. The method builds step by step a matrix Vk whose
columns are orthonormal and form a basis for the Krylov subspace Kk(S, v), and an
upper Hessenberg projection matrix Hk = V ∗

k SVk. Let ek be the kth column of the
identity matrix. The iterations can be represented by

SVk − VkHk = vk+1hk+1,ke
∗
k, Vk ∈ C

n×k, Hk ∈ C
k×k,(6.2)

where vk+1 is appended to Vk to obtain Vk+1 and Hk is expanded into Hk+1 so that
its (k+1, k) entry is hk+1,k. The columns of Vk are computed by a Gram–Schmidt or-
thogonalization process. This process does not guarantee orthogonality of the columns
of Vk in floating point arithmetic, so reorthogonalization is recommended to improve
the numerical stability of the method [32], [135]. Sometimes, B-orthogonalization is
used, so that V ∗

k+1BVk+1 = I instead of V ∗
k+1Vk+1 = I [94].

The non-Hermitian Lanczos method, also called the two-sided Lanczos method,
is an oblique projection method. It produces a non-Hermitian tridiagonal matrix Tk

and a pair of matrices Vk and Wk such that W ∗
kVk = I and whose columns form bases

for the Krylov subspaces Kk(S, v) and Kk(S∗, w), where v and w are starting vectors
such that w∗v = 1. The matrices Vk, Wk, and Tk satisfy the recurrence relations

SVk − VkTk = γk+1vk+1e
∗
k,

S∗Wk −WkT
∗
k = β̄k+1wk+1e

∗
k.

At the next step, we set Vk+1 = [Vk, vk+1] and Wk+1 = [Wk, wk+1]. The scalars γk+1

and βk+1 will be the (k + 1, k) and (k, k + 1) entries of Tk+1 [37].
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The practical advantage of the two-sided Lanczos method over the Arnoldi method
is that the matrix Tk is tridiagonal and we only need to save six vectors, assuming we
do not resort to any sort of reorthogonalization. The use of the two-sided Lanczos al-
gorithm to solve the QEP is dealt with in [12], [20], and [26]. A major problem with the
Lanczos method is its potential for breakdown, which happens when w∗

k+1vk+1 ≈ 0.
The look-ahead Lanczos method [53], [116], [152], the block Lanczos method [6], [69],
[81], and the nested Lanczos method [38] all offer cures for this problem. Sometimes,
B-biorthogonalization is used, for which W ∗

kBVk = I instead of W ∗
kVk = I [6].

The efficiency of these Krylov projection methods depends on the efficiency with
which matrix-vector products with the operator S (and with S∗ for the two-sided
Lanczos method) can be computed. If A − λB is a linearization of Q(λ), then
S = B−1A. For example, if M is nonsingular and A − λB is the first companion
linearization (3.6), we have

S = B−1A =

[
0 I

−M−1K −M−1C

]
.

In this case, applying S to a vector requires a (sparse) LU factorization of M . If a
shift-and-invert spectral transformation is used with shift σ, then S = (A− σB)−1B.
If A and B are defined from the first companion linearization (3.6), then, using (3.8),
we have

S =

[
I 0
σI I

] [
Q(σ)−1 0

0 I

] [
−(C + λM) −M

I 0

]
.(6.3)

Hence to apply S to a vector we do not need to factorize the 2n× 2n matrix A− σB;
we need just an LU factorization of the n× n matrix Q(σ).

If M , C, and K are real, a complex shift can be used, but in this case S is complex
and loses the spectral properties of Q(λ): there is no guarantee that the eigenvalues
of S either are real or occur in complex conjugate pairs. Moreover, the Arnoldi or
unsymmetric Lanczos procedures have to be carried out in complex arithmetic. We
note that each eigenvalue near σ is related to an eigenvalue near σ̄. To preserve the
structure, we need to extract these pairs of eigenvalues together. In this case, the
obvious transformation [115] is fσ(λ) = (λ− σ)−1(λ− σ̄)−1. The corresponding S is
given by

S = (A− σB)−1B(A− σ̄B)−1B

=
1

Im(σ)
Im
(
(A− σB)−1B

)
.(6.4)

Note that S is now real and the eigenvectors of A − λB are eigenvectors of S. In
practice, because of (6.3) this approach requires a complex factorization of Q(σ) and,
for each multiplication y = Sv, the solution of the complex system (A− σB)y = Bv.
Only the imaginary part of y is kept to perform the rest of the Arnoldi or Lanczos
steps. The eigenvalues of Q(λ) can be recovered from the eigenvalues µ of S by solving
the quadratic equation (λ − σ)(λ − σ̄) = 1/µ. As this equation has two solutions λ,
instead of solving it, for a given eigenvector ξ the Rayleigh quotient λ = ξ∗Aξ/ξ∗Bξ is
formed to obtain the eigenvalue corresponding to ξ. If µ is a multiple eigenvalue of S,
the λ’s are not recovered from the Rayleigh quotient but from the Galerkin projection
of A − λB on the eigenspace of µ. If it is not possible to check the multiplicities of
the µ’s the Galerkin projection on the Krylov space should be used. (Note that the
matrix Hk is the Galerkin projection of S and not of A− λB.)
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A major disadvantage of the shift-and-invert Arnoldi and Lanczos methods is
that a change of shift σ requires building a new Krylov subspace: all information
built with the old σ is lost. The rational Krylov algorithm [123] is a generalization
of the shift-and-invert Arnoldi algorithm where the shift σ can be changed without
building a new Krylov subspace. It can be preferable to use shift-and-invert Arnoldi
when several eigenvalues are desired.

6.1.2. Symmetric QEPs. When M or K are positive definite we have to choose
between a linearization A−λB with A unsymmetric and B symmetric positive definite
and a symmetric linearization with A and B symmetric but indefinite. The unsym-
metric linearization can be solved via the Arnoldi or two-sided Lanczos process. We
can take advantage of the definitiveness of B if no spectral transformation is used.

If the symmetric linearization is used, one can take advantage of the symmetry
of A and B in the nonsymmetric Lanczos algorithm [26], [110] and cut the work
and storage requirement approximately in half. Parlett and Chen [114] introduced a
pseudo-Lanczos algorithm for symmetric pencils that uses an indefinite inner product
and respects the symmetry of the problem. Assuming B is nonsingular, the pseudo-
Lanczos method builds a basis Vk for Kk(B−1A, v) which is A-orthogonal (that is,
V ∗

k AVk = Ωk is diagonal) and a projection matrix Tk = V ∗
k AB

−1AVk which is sym-
metric and tridiagonal. The matrices Vk, Tk, and Ωk satisfy the recurrence

B−1AVk − VkΩ
−1
k Tk =

βk

ωk
vk+1e

∗
k.

This method is discussed in [8] and a thorough analysis is given in [83]. The main
drawback of this procedure is that if A is symmetric indefinite, the condition v∗

kAvk 6=
0 may be violated, and there is no assurance that the basis vectors will be linearly
independent. The reduced symmetric generalized eigenvalue problem

Tkξ = λΩkξ

inherits the same numerical difficulties as the original pair (A,B). It can be solved
by one of the methods discussed in section 5.2.

Kowalski [83] has developed a block version of this pseudosymmetric Lanczos
algorithm with constrained look-ahead, combining efficiency and robustness.

6.1.3. Gyroscopic Systems. Let A − λB be a Hamiltonian/skew-Hamiltonian
linearization of Q(λ) in (3.22). Having a linearization that respects the structure, we
need a Krylov method that respects the spectral properties of (A,B) too. As in (5.2),
let B = B1B2 be such that H = B−1

1 AB−1
2 is Hamiltonian.

We assume that the matrices are real. The symplectic Lanczos method for Hamil-
tonians H ∈ R

2n×2n [14], [48], [49] generates a sequence of matrices

V2k = [v1, w1, v2, w2, . . . , vk, wk] ∈ R
2n×2k,

and a 2k × 2k Hamiltonian J-Hessenberg matrix

H̃2k =

[
D1 Tk

D2 −D1

]

with D1, D2 diagonal and Tk symmetric tridiagonal. The space spanned by the
columns of V2k is symplectic, that is, V T

2kJV2k = J . The matrices H̃2k and V2k satisfy
the relation

P2nHP
T
2nV2k = V2kP2kH̃2kP

T
2k + γk+1vk+1e

T
2k,
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where P2j = [e1, e3, . . . , e2j−1, e2, e4, . . . , e2j ] is a 2j × 2j permutation matrix and
γk+1 is the (k + 1, k) entry of Tk+1. We refer to [14] for a detailed description of
the algorithm. The Hamiltonian SR algorithm [24] or the HR algorithm [16] can be

used to solve the reduced problem with the Hamiltonian J-Hessenberg matrix H̃2k.
This method can be used on the inverted operator H−1, which is also Hamiltonian,
to compute the smallest eigenvalues.

The shift-and-invert operation with shift σ fails to preserve the (λ,−λ, λ̄,−λ̄)
spectral structure of H, as S = (H −σI)−1 is not Hamiltonian. Each eigenvalue near
σ is also related to an eigenvalue near −σ, σ̄, and −σ̄. In the case where the pencil
(A,B) is real, Mehrmann and Watkins [101] suggested using all these shifts in one
run. The operator is given by

S = B2(A− σB)−1B(A+ σB)−1B1

if the shift σ is real and

S = B2(A− σB)−1B(A+ σB)−1B(A− σ̄B)−1B(A+ σ̄B)−1B1

if σ is complex. In both cases, it is shown in [101] that S is real and skew-Hamiltonian.
Each eigenvalue has multiplicity 2, and if x is a Schur vector, so is Jx. The Krylov
subspace Kk(S, v) has the property that it is isotropic, i.e., y∗Jx = 0 for all x, y ∈
Kk(S, v), which means that JKk(S, v) is orthogonal to Kk(S, v).

The isotropic Arnoldi process [101] produces a Hessenberg matrix Hk and a basis
Vk such that V ∗

k Vk = I and V ∗
k JVk = 0. It differs from the classical Arnoldi process

in that the process orthogonalizes the columns of Vk as well as the columns of JVk,
and in exact arithmetic the process terminates after n− 1 steps if the size of S is 2n.
The matrices Hk and Vk satisfy the recurrence relation (6.2). Each eigenvalue of S
has multiplicity 2, and if x is a Schur vector, so is Jx. The isotropic Arnoldi method
removes all Schur vectors of the form Jx, so only one version of a multiple eigenvalue
is computed. Note that this method is valid for real Hamiltonian/skew-Hamiltonian
pencils only.

If the matrices of the gyroscopic system are complex, one can use the generalized
Cayley transform on the Hamiltonian B−1

1 AB−1
2 . The resulting operator is

S = B2(A− σB)−1(A+ σ̄B)(A− σ̄B)−1(A+ σB)B−1
2 ,

which is symplectic and real if (A,B) is real. Its eigenvalues occur in quadruples
µ, µ̄, µ−1, µ̄−1, so that shifts σ close to the imaginary axis must be avoided. Structure-
preserving Lanczos-like methods that use both S and S−1 in a symmetric manner can
be applied (see Benner and Fassbender [15] for details of the method).

6.2. Projection Methods Applied Directly to the QEP. This class of methods
builds orthonormal bases Vk for the subspace Kk and solves the projected problem
V ∗

k Q(λ)Vkz = 0 of smaller size using one of the methods described in section 5.
As an orthogonal projection preserves symmetry and skew-symmetry, the numerical
methods of sections 5.2 and 5.3 can be used to solve the projected problem.

In this section, we propose techniques for building the columns of Vk. We assume
that Vk = [v1, . . . , vk] is given and we have computed the Ritz pair (λ̃, x̃ = Vkz) so

that V ∗
k Q(λ̃)Vkz = 0 and (λ̃, x̃) is close to a target (or shift) σ. The goal is to add a

new vector vk+1 so that the Ritz pair becomes more accurate.
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6.2.1. Residual Iteration Method. The subspace Kk can be expanded with the
direction

v = (σ2M + σC +K)−1(λ̃2M + λ̃C +K)x̃ = Q(σ)−1r,(6.5)

where r = Q(λ̃)x̃ is the residual. Then v is orthonormalized against v1, . . . , vk into
vk+1. The subspace is extended by a quadratic Cayley transform applied to the Ritz
vector. The method is studied in [100], [108] and a variation is proposed in [77]. If

the matrices are real, then (λ̃, x̃) and (
¯̃
λ, ¯̃x) are both Ritz pairs and the two directions

v and v̄ or, equivalently, Re(v) and Im(v) can be added to the subspace.

A problem arises when σ = λ̃ in the quadratic Cayley transform since v =
Q(σ)−1Q(λ̃)x̃ = x̃ and no new direction is added to the subspace. One possibility is
to replace (6.5) by

v = Q(σ)−1Q′(σ)x̃,

where Q′(σ) = 2σM +C, which can be regarded as a generalization of the shift-and-
invert transformation. Another alternative is to use the Jacobi–Davidson method as
discussed in the next section.

6.2.2. Jacobi–Davidson Method for the QEP. In the Jacobi–Davidson
method the subspace Kk is not expanded by a vector obtained from inverse itera-
tion but by Newton’s method applied to the equations Q(λ)x = 0 and x∗x = 1, where

x = x̃+ v and λ = λ̃+ η. This amounts to the linear system

[
Q(λ̃) Q′(λ̃)x̃
2x̃∗ 0

] [
v
η

]
= −

[
r
0

]
,

where r = Q(λ̃)x̃ is the residual and Q′(λ̃) = 2λ̃M +C. Since λ̃ and x̃ are computed

by a projection method, we have that x̃∗Q(λ̃)x̃ = 0. Further manipulations lead to
the correction equation [131], [133], [132]

(
I −

Q′(λ̃)x̃x̃∗

x̃∗Q′(λ̃)x̃

)
Q(λ̃)

(
I −

x̃x̃∗

x̃∗x̃

)
v = r.(6.6)

The new basis vector vk+1 is obtained by orthonormalizing v against the previous
columns of Vk.

The Jacobi–Davidson method has been successfully used to compute the most
unstable eigenvalues related to the incompressible attachment-line flow problem that
arises near the leading edge of a swept wing; see [71], where problems with more than
10,000 unknowns were solved. In [131] an acoustic problem with n up to 250,000 was
solved with this method.

6.2.3. Comments. A comparison between inverse residual iteration, Jacobi–
Davidson, and shift-and-invert Arnoldi was carried out in [100] for an application
from acoustics. No clear winner was identified, but some preference was given to
shift-and-invert Arnoldi when several eigenvalues are sought.

Both the quadratic residual iteration and the Jacobi–Davidson methods target
one eigenvalue at a time, which may lead to fast local convergence but slow global
convergence. This contrasts with Krylov subspace methods, in which a group of
eigenvalues is computed simultaneously.
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One major advantage of the residual iteration and Jacobi–Davidson methods over
Krylov subspace methods is that when the size n of the matrices is too large, Q(σ)
in (6.5) and the correction equation (6.6) can be solved by an iterative solver such
as GMRES. Therefore, these methods require only matrix-vector products. On the
other hand, the convergence of the iterative solver might be slow. In practice a good
preconditioner is necessary to make these methods work well.

Since iterative linear solvers can be used, the residual iteration method and the
Jacobi–Davidson method are well suited for parallelization [131], [145].

6.3. Restarting, Locking, and Purging. Projection methods have high storage
and computational requirements as the dimension k of the subspace Kk increases.
Restarting schemes and deflation procedures can be used to improve the efficiency.

For Krylov subspace methods, restarting means that the starting vector v defining
the Krylov subspace Kk(S, v) is replaced by a new, improved starting vector. The
new vector is generally a linear combination of the eigenvectors of interest and can be
defined either explicitly [112], [125] or implicitly [94].

Already converged eigenvalues can be deflated. If (λ̃, x̃) is a converged Ritz eigen-
pair that belongs to the set of desired eigenvalues, one may want to lock it and then
continue to compute the remaining eigenvalues without altering (λ̃, x̃). If the con-

verged (λ̃, x̃) does not belong to the set of wanted eigenvalues, one may want to
remove it from the current subspace Kk. These two types of deflation are called
locking and purging.

One important advantage of working with a linearization of Q(λ) and a Krylov
subspace method is that one can get at the same time the partial Schur decomposition
of the single matrix S that is used to define the Krylov subspaces. The orthogonal
Schur basis is useful for building a stable method for purging and locking [50], [93],
[123], [136], as we now briefly describe. We recall that the matrix S contains the
desired eigenvalues of Q(λ) in the exterior of its spectrum (see section 6.1). Let
W ∗

kSVk = Sk be the projected matrix with Schur form U∗SkU = Tk, where U is a
k×k unitary matrix and Tk is k×k upper triangular. Let VkU = Qk and WkU = Zk.
Then

SQk = ZkTk + Ek

forms an approximate partial Schur form for S, with Ek an error matrix. The Schur
form can be reordered. Locking involves moving the already converged eigenvalues
to the top corner of Tk and setting the corresponding first columns of Ek to zero.
The error made by explicitly setting the first columns of Ek to zero is small when
these columns have small norm. This locking operation hence introduces a small
backward error in the remaining eigenvalues to be computed. When eigenvalues are
not wanted, they can be purged from Kk by moving them to the bottom corner of Tk

and by removing the corresponding generalized Schur vectors in Qk and Zk. Purging
can be performed implicitly by implicit restarting with exact shifts. Purging reduces
the number of basis vectors by only keeping those that are likely to contribute to
the convergence of the wanted eigenpairs [107]. After purging, the subspace can be
expanded again by additional Krylov iterations.

It is harder to organize locking, purging, and restarting for methods that tackle
the problem in its original form, such as the residual iteration or the Jacobi–Davidson
method, since there is no Schur form for QEPs. In [7, sect. 9.2], the Jacobi–Davidson
method is restarted by keeping a smaller subspace that is spanned by the best m < k
Ritz vectors from the last iteration. Meerbergen [100] proposes locking, purging, and



278 FRANÇOISE TISSEUR AND KARL MEERBERGEN

restarting using a partial Schur form for a linearization A − λB of Q(λ). A partial
Schur form for A−λB is built via the Schur form of V∗

2k(A−λB)V2k, where V2k is the

2n×2k matrix V2k = diag(Vk, Vk). Special care is needed so that the new matrix Ṽ2m

with fewer columns 2m < 2k obtained after locking and purging keeps the 2×2 block
form diag(Vm, Vm). This is vital to preserving the relationship between the projected
QEP and the projected GEP.

7. Software. We list available software that, whenever possible, takes advantage
of the structure of the matrices defining the problem as well as the spectral properties
of the eigenvalue problem.

7.1. General QEPs, Unsymmetric Linearization.

7.1.1. Direct Methods. Most linear algebra–related software packages include
subroutines that implement QZ algorithms and can therefore be used to implement
Algorithm 5.1.

In LAPACK [2], the routine xGGEV computes generalized eigenvalues and option-
ally the left and/or right generalized eigenvectors. LAPACK is freely available at
http://www.netlib.org/lapack/.

In MATLAB, the polyeig(K,C,M) command is an implementation of Algorithm
5.1 that returns the 2n eigenvalues and, optionally, the right eigenvectors.

7.1.2. Iterative Methods. A variant of the Arnoldi procedure called the implic-
itly restarted Arnoldi method (IRAM) is provided by the ARPACK software [94],
freely available at ftp://ftp.caam.rice.edu/pub/software/ARPACK. It is designed to
solve large-scale GEPs with non-Hermitian (A,B). It contains drivers for several
spectral transformations (invert, shift-and-invert, Cayley transforms). The user has
only to provide the matrix-vector products involved in the Arnoldi process. A parallel
version, PARPACK, is also available from the same ftp address. In MATLAB 6, the
eigs function is an interface to the ARPACK package.

A FORTRAN implementation of the non-Hermitian Lanczos method with look-
ahead to cure breakdowns is available in QMRPACK [54] at http://www.netlib.org/
linalg/qmrpack.tgz under the name DUAL for double precision real and ZUAL for double
precision complex.

For the solution of QEPs arising in structural engineering, the MSC/Nastran finite
element package [82] uses the first companion linearization (3.6) and a shift-and-invert
two-sided block Lanczos algorithm to solve the linearized form.

7.2. Symmetric Linearization—Direct Methods. Most linear algebra–related
software packages also include subroutines for the Hermitian GEP Ax = λBx with
positive definite matrix B. In LAPACK [2], the corresponding routines are xSYGV,
which uses the QR algorithm as the underlying algorithm; xSYGVX, which computes
all or a selected subset of eigenvalues and optionally eigenvectors and uses the QR
algorithm or bisection method and inverse iteration as the underlying algorithms,
whichever is more efficient; and xSYGVD, which uses the divide-and-conquer algorithm
as the underlying algorithm. In MATLAB, the command eig(A,B) is the analogue
of the LAPACK routine xSYGV.

There is no software available that takes advantage of the symmetry and possible
spectral properties for definite pairs (A,B), where B is indefinite, or indefinite pairs
(A,B).

7.3. Hamiltonian/Skew-Hamiltonian Linearization—Direct Methods. A For-
tran 77 implementation by Benner, Byers, and Barth [13] of Van Loan’s square-
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reduced method for the computation of the eigenvalues of Hamiltonian matrices is
available at http://www.netlib.org/toms/800, and a MATLAB version is available at
http://www.math.uni-bremen.de/̃ benner/software.html.

8. Discussion and Related Problems. In this survey, we have treated only
quadratic matrix polynomials, but most of the theory and numerical methods ex-
tend naturally to matrix polynomials of degree greater than 2. Higher degree polyno-
mial eigenvalue problems arise in a variety of applications in science and engineering.
For example, a third degree eigenvalue problem arising from aeroacoustics analy-
sis was studied in [5]. In fluid mechanics the study of the spatial stability of the
Orr–Sommerfeld equation [22] yielded a quartic eigenvalue problem. For nonlinear
eigenvalue problems A(λ)x = 0 for which the coefficients in A(λ) are not polynomials
in λ, we refer to [3], [108], and [122].

For dense problems, there is currently no numerical method that both tackles the
problem directly (that is, without using a linearization of Q(λ)) and computes all the
eigenpairs. The QEP is usually linearized and solved by GEP techniques. The GEP
techniques applied to the linearized form do not yield backward stable methods: the
computed solution is usually the exact solution of a nearby GEP but may not be the
exact solution of a nearby QEP because GEP eigensolvers do not respect the structure
in the 2n× 2n matrices of the linearization. There is therefore a need to improve the
stability of GEP approaches to the solution of the QEP.

In contrast with general QEPs [82], [94], there is currently no software available
for the methods described in sections 5 and 6 for symmetric QEPs and QEPs derived
from gyroscopic systems, nor for the methods discussed in section 6.2.

In section 6 we omitted inverse iteration and subspace iteration as they are not
competitive [66], [125] with the projection methods described in section 6. Some
references on inverse iteration and subspace iteration methods for the solution of the
QEP are [68], [95], [96], [111], [120], [137], [153].

In the frequency response analysis of vibrating systems [31], [47], [78], [151], and
in electromagnetic wave propagation problems [86], one has to solve linear systems of
the form

(ω2M + ωC +K)x(ω) = b(ω), b(ω) ∈ C
n given,

over a wide band of frequencies ω ∈ I = [ωl, ωh]. One can use a linearization A−ωB
of the quadratic matrix polynomial Q(ω) = ω2M + ωC + K. When the size of the
problem is not too large, one can compute the generalized Schur decomposition of the
2n× 2n linearized form

W ∗AZ = T, W ∗BZ = S,

where W and Z are unitary and T and S are upper triangular. Then, if A − ωB is
the first companion form (3.6) of Q(ω) and ω is not an eigenvalue,

x(ω) = −[I 0]Z[T − ωS]−1W ∗

[
0
I

]
b(ω) = Q−1(ω)b(ω).

Hence once the generalized Schur decomposition has been computed, we can compute
Q(ω)−1x at a cost of O((2n)2) flops, since T −ωS is triangular of dimension 2n. This
approach is not feasible when the matrices are large. An alternative approach is to
consider ω ∈ I as a continuous variable and to use a power series–Padé approximation
of x(ω) about a center frequency ω0 ∈ I [86]. If the interval I is large, this may require
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several power series expansions. Different iterative schemes based on Krylov subspace
methods for the solution of the augmented 2n× 2n shifted system

(A− ωB)y(ω) = d(ω)

have also been proposed [31], [47], [52], [55], [78], [127], [151]. These iterative shifted
linear solvers may suffer from slow convergence. For these highly structured linear
systems, good preconditioners need to be investigated.

A numerical range for matrix polynomials [97] and self-adjoint quadratic matrix
polynomials [90] as well as generalizations of the inertia theorem for quadratic matrix
polynomials [19] have been investigated. Several distance quantities derived in the
linear case have already been extended to the nonlinear case. For instance, the notion
of stability radius, widely used in control theory to measure the size of the smallest
perturbation that moves a stable system to an unstable system, has been extended to
matrix polynomials for both complex perturbations [60], [113] and real perturbations
[59]. Recently, several nearness questions such as, “Where is the nearest definite pair
for the Hermitian generalized eigenvalue problem?” [27] or “Where is the nearest non-
regular pencil?” [25] have been investigated. New questions arise, including, “Where
is the nearest nondefinite or nonoverdamped system?” [75] and “Where is the nearest
nonregular quadratic matrix polynomial?”

As we have stressed throughout this survey, QEPs are of growing importance and
many open questions are associated with them. We hope that our unified overview of
applications, theory, and numerical methods for QEPs will stimulate further research
in this area.
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