MATH W81: HOMEWORK #6

1. Let

$$u_1 = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad u_3 = \frac{1}{\sqrt{21}} \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix}.$$

Let the Hermitian matrix *A* be given by

$$\boldsymbol{A} = -2\boldsymbol{u}_1\boldsymbol{u}_1^{\mathrm{T}} + \boldsymbol{u}_2\boldsymbol{u}_2^{\mathrm{T}} + 3\boldsymbol{u}_3\boldsymbol{u}_3^{\mathrm{T}}.$$

Set

$$S^{\perp} = \operatorname{Span}\{s^{\perp}\}, \quad s^{\perp} = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\ 3\\ -2 \end{pmatrix}.$$

(a) Let $S = (S^{\perp})^{\perp}$. Find a projection matrix *P* with the properties:

- $P: \mathbb{C}^3 \mapsto S$
- $P^2 x = P x$ for any $x \in \mathbb{C}^3$
- Px = 0 for all $x \in S^{\perp}$.
- (b) Find the 2 × 2 Hermitian matrix representation A_{rep} for the linear operator $PAP : S \mapsto S$.
- (c) Explicitly construct a function, say $r(\lambda)$, which has the properties:
 - $r(\lambda) = 0$ if and only if $\lambda \in \sigma(A_{rep})$
 - the graph of $r(\lambda)$ has vertical asymptotes for $\lambda \in \sigma(A)$.
- (d) Analyze the graph of $r(\lambda)$, and from this analysis explicitly state how the eigenvalues of A_{rep} relate to those of A.

2. Consider the generalized eigenvalue problem

$$\begin{pmatrix} a & 1 & 2 \\ 1 & 3 & 5 \\ 2 & 5 & 3 \end{pmatrix} \boldsymbol{v} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \boldsymbol{v}.$$

Construct a function, say $r(\lambda)$, with the properties:

- $r(\lambda) = 0$ implies that λ is an eigenvalue
- the graph of $r(\lambda)$ has two vertical asymptotes.

Analyze the graph of $r(\lambda)$ in order to answer the following questions:

- (a) For which values of λ does $r(\lambda)$ have vertical asymptotes?
- (b) For which value(s) of *a* does $r(\lambda) = 0$ have three distinct real-valued solutions?
- (c) When $r(\lambda) = 0$ has three real-valued solutions, how does the location of these zeros relate to the location of the vertical asymptotes?
- (d) For which value(s) of *a* does $r(\lambda) = 0$ have only one real-valued solution? What can be said about the eigenvalues in this case? What can be said about the location of the one real-valued zero relative to the location of the vertical asymptotes?