Math W81: Homework \#6

1. Let

$$
\boldsymbol{u}_{1}=\frac{1}{\sqrt{14}}\left(\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right), \quad \boldsymbol{u}_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \boldsymbol{u}_{3}=\frac{1}{\sqrt{21}}\left(\begin{array}{r}
-4 \\
1 \\
2
\end{array}\right)
$$

Let the Hermitian matrix A be given by

$$
\boldsymbol{A}=-2 \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\mathrm{T}}+\boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\mathrm{T}}+3 \boldsymbol{u}_{3} \boldsymbol{u}_{3}^{\mathrm{T}}
$$

Set

$$
S^{\perp}=\operatorname{Span}\left\{s^{\perp}\right\}, \quad s^{\perp}=\frac{1}{\sqrt{14}}\left(\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right)
$$

(a) Let $S=\left(S^{\perp}\right)^{\perp}$. Find a projection matrix \boldsymbol{P} with the properties:

- $P: \mathbb{C}^{3} \mapsto S$
- $P^{2} x=P x$ for any $x \in \mathbb{C}^{3}$
- $P x=0$ for all $x \in S^{\perp}$.
(b) Find the 2×2 Hermitian matrix representation $A_{\text {rep }}$ for the linear operator $P A P: S \mapsto S$.
(c) Explicitly construct a function, say $r(\lambda)$, which has the properties:
- $r(\lambda)=0$ if and only if $\lambda \in \sigma\left(A_{\text {rep }}\right)$
- the graph of $r(\lambda)$ has vertical asymptotes for $\lambda \in \sigma(A)$.
(d) Analyze the graph of $r(\lambda)$, and from this analysis explicitly state how the eigenvalues of $A_{\text {rep }}$ relate to those of A.

2. Consider the generalized eigenvalue problem

$$
\left(\begin{array}{lll}
a & 1 & 2 \\
1 & 3 & 5 \\
2 & 5 & 3
\end{array}\right) v=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) v
$$

Construct a function, say $r(\lambda)$, with the properties:

- $r(\lambda)=0$ implies that λ is an eigenvalue
- the graph of $r(\lambda)$ has two vertical asymptotes.

Analyze the graph of $r(\lambda)$ in order to answer the following questions:
(a) For which values of λ does $r(\lambda)$ have vertical asymptotes?
(b) For which value(s) of a does $r(\lambda)=0$ have three distinct real-valued solutions?
(c) When $r(\lambda)=0$ has three real-valued solutions, how does the location of these zeros relate to the location of the vertical asymptotes?
(d) For which value(s) of a does $r(\lambda)=0$ have only one real-valued solution? What can be said about the eigenvalues in this case? What can be said about the location of the one real-valued zero relative to the location of the vertical asymptotes?

