Math W81: Homework #5

1. Let

$$u_1 = \frac{1}{\sqrt{14}} \begin{pmatrix} 1\\ -2\\ 3 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}, \quad u_3 = \frac{1}{\sqrt{21}} \begin{pmatrix} -4\\ 1\\ 2 \end{pmatrix}, \quad w = \frac{1}{\sqrt{14}} \begin{pmatrix} 3\\ -1\\ -2 \end{pmatrix}.$$

Let the Hermitian matrix *A* be given by

$$\boldsymbol{A} = -6\boldsymbol{u}_1\boldsymbol{u}_1^{\mathrm{T}} - 2\boldsymbol{u}_2\boldsymbol{u}_2^{\mathrm{T}} + 7\boldsymbol{u}_3\boldsymbol{u}_3^{\mathrm{T}}.$$

- (a) What are the eigenvalues of A, and for each eigenvalue what is a corresponding eigenvector?
- (b) Set $B = A + \alpha w w^{T}$. Explicitly construct a function, say $f(\lambda)$, which has the properties:
 - $f(\lambda) = 0$ if and only if $\lambda \in \sigma(B)$
 - the graph of $f(\lambda)$ has vertical asymptotes for $\lambda \in \sigma(A)$.
- (c) Explicitly state how the eigenvalues of **B** relate to those of **A** as a function of α .

2. Let

$$u_1 = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad u_3 = \frac{1}{\sqrt{21}} \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix},$$

and let Let

$$\boldsymbol{A} = 3\boldsymbol{u}_1\boldsymbol{u}_1^{\mathrm{T}} + 5\boldsymbol{u}_2\boldsymbol{u}_2^{\mathrm{T}} + 8\boldsymbol{u}_3\boldsymbol{u}_3^{\mathrm{T}}.$$

Let *S* be the subspace

$$S = \operatorname{Span}\left\{ \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}, \begin{pmatrix} 3\\ -4\\ -2 \end{pmatrix} \right\}.$$

- (a) Find a projection matrix *P* with the properties:
 - $\boldsymbol{P}: \mathbb{C}^3 \mapsto S$
 - $P^2 x = P x$ for any $x \in \mathbb{C}^3$
 - Px = 0 for all $x \in S^{\perp}$.
- (b) Find the 2 × 2 Hermitian matrix representation A_{rep} for the linear operator $PAP : S \mapsto S$.
- (c) How do the eigenvalues for A_{rep} relate to those for *A*?