Math W81: Homework #5

1. Let

\[u_1 = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad u_3 = \frac{1}{\sqrt{21}} \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix}, \quad w = \frac{1}{\sqrt{14}} \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}. \]

Let the Hermitian matrix \(A \) be given by

\[A = -6u_1u_1^T - 2u_2u_2^T + 7u_3u_3^T. \]

(a) What are the eigenvalues of \(A \), and for each eigenvalue what is a corresponding eigenvector?

(b) Set \(B = A + \alpha ww^T \). Explicitly construct a function, say \(f(\lambda) \), which has the properties:

- \(f(\lambda) = 0 \) if and only if \(\lambda \in \sigma(B) \)
- the graph of \(f(\lambda) \) has vertical asymptotes for \(\lambda \in \sigma(A) \).

(c) Explicitly state how the eigenvalues of \(B \) relate to those of \(A \) as a function of \(\alpha \).

2. Let

\[u_1 = \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad u_3 = \frac{1}{\sqrt{21}} \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix}, \]

and let

\[A = 3u_1u_1^T + 5u_2u_2^T + 8u_3u_3^T. \]

Let \(S \) be the subspace

\[S = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ -4 \\ -2 \end{pmatrix} \right\}. \]

(a) Find a projection matrix \(P \) with the properties:

- \(P : \mathbb{C}^3 \rightarrow S \)
- \(P^2 x = Px \) for any \(x \in \mathbb{C}^3 \)
- \(Px = 0 \) for all \(x \in S^\perp \).

(b) Find the \(2 \times 2 \) Hermitian matrix representation \(A_{\text{rep}} \) for the linear operator \(PAP : S \mapsto S \).

(c) How do the eigenvalues for \(A_{\text{rep}} \) relate to those for \(A \)?