Math W81: Homework \#5

1. Let

$$
\boldsymbol{u}_{1}=\frac{1}{\sqrt{14}}\left(\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right), \quad \boldsymbol{u}_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \boldsymbol{u}_{3}=\frac{1}{\sqrt{21}}\left(\begin{array}{r}
-4 \\
1 \\
2
\end{array}\right), \quad w=\frac{1}{\sqrt{14}}\left(\begin{array}{r}
3 \\
-1 \\
-2
\end{array}\right) .
$$

Let the Hermitian matrix \boldsymbol{A} be given by

$$
\boldsymbol{A}=-6 \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\mathrm{T}}-2 \boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\mathrm{T}}+7 \boldsymbol{u}_{3} \boldsymbol{u}_{3}^{\mathrm{T}} .
$$

(a) What are the eigenvalues of A, and for each eigenvalue what is a corresponding eigenvector?
(b) Set $\boldsymbol{B}=\boldsymbol{A}+\alpha w \boldsymbol{w}^{\mathrm{T}}$. Explicitly construct a function, say $f(\lambda)$, which has the properties:

- $f(\lambda)=0$ if and only if $\lambda \in \sigma(\boldsymbol{B})$
- the graph of $f(\lambda)$ has vertical asymptotes for $\lambda \in \sigma(A)$.
(c) Explicitly state how the eigenvalues of \boldsymbol{B} relate to those of \boldsymbol{A} as a function of α.

2. Let

$$
\boldsymbol{u}_{1}=\frac{1}{\sqrt{14}}\left(\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right), \quad \boldsymbol{u}_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \quad \boldsymbol{u}_{3}=\frac{1}{\sqrt{21}}\left(\begin{array}{r}
-4 \\
1 \\
2
\end{array}\right)
$$

and let Let

$$
\boldsymbol{A}=3 \boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\mathrm{T}}+5 \boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\mathrm{T}}+8 \boldsymbol{u}_{3} \boldsymbol{u}_{3}^{\mathrm{T}} .
$$

Let S be the subspace

$$
S=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{r}
3 \\
-4 \\
-2
\end{array}\right)\right\}
$$

(a) Find a projection matrix \boldsymbol{P} with the properties:

- $P: \mathbb{C}^{3} \mapsto S$
- $P^{2} x=P x$ for any $x \in \mathbb{C}^{3}$
- $P x=0$ for all $x \in S^{\perp}$.
(b) Find the 2×2 Hermitian matrix representation $\boldsymbol{A}_{\text {rep }}$ for the linear operator $P A P: S \mapsto S$.
(c) How do the eigenvalues for $A_{\text {rep }}$ relate to those for A ?

