Math W81: Homework \#4

1. A Hermitian matrix $\boldsymbol{A} \in \mathbb{C}^{n \times n}$ has the spectral decomposition

$$
\boldsymbol{A}=\lambda_{1} \boldsymbol{G}_{1}+\lambda_{2} \boldsymbol{G}_{2}+\cdots+\lambda_{n} \boldsymbol{G}_{n} .
$$

The rank-one projection matrices \boldsymbol{G}_{j} have as their range Span $\left(\left\{\boldsymbol{u}_{j}\right\}\right)$, where \boldsymbol{u}_{j} is an eigenvector associated with the eigenvalue λ_{j}. Show that for any integer ℓ,

$$
\boldsymbol{A}^{\ell}=\lambda_{1}^{\ell} \boldsymbol{G}_{1}+\lambda_{2}^{\ell} \boldsymbol{G}_{2}+\cdots+\lambda_{n}^{\ell} \boldsymbol{G}_{n} .
$$

2. Find the spectral decomposition of the matrix

$$
A=\left(\begin{array}{ll}
2 & 5 \\
5 & 2
\end{array}\right)
$$

3. Find the $Q R$ factorization of the matrix

$$
A=\left(\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 2 & 0 \\
0 & -1 & -1
\end{array}\right)
$$

4. Consider the generalized eigenvalue problem

$$
A v=\lambda\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) v, \quad A=\left(\begin{array}{cc}
3 a & 1 \\
1 & a
\end{array}\right) .
$$

(a) Find the eigenvalues of \boldsymbol{A}, and explicitly determine the values of a for which $\mathrm{n}(\boldsymbol{A})=0, \mathrm{n}(\boldsymbol{A})=1$, and $\mathrm{n}(A)=2$. In particular, state the values of a for which $\mathrm{n}(A)$ changes.
(b) Find the eigenvalues for the generalized problem. Explicitly state the values of a for which the eigenvalues are purely real, and those values of a for which the eigenvalues have a nonzero imaginary part. For which values of a does the transition occur?
(c) Is there a relationship between the transition values found in part (a) and those found in part (b)? Explain.

