Math W81: Homework \#3

1. Let $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ be an orthonormal set of vectors.
(a) Set

$$
\boldsymbol{P}_{1}=\boldsymbol{u}_{1} \boldsymbol{u}_{1}^{\mathrm{H}}+\boldsymbol{u}_{2} \boldsymbol{u}_{2}^{\mathrm{H}}+\cdots+\boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\mathrm{H}},
$$

where for any vector $x \in \mathbb{C}^{n}$,

$$
\boldsymbol{x}^{\mathrm{H}}=\overline{\boldsymbol{x}^{\mathrm{T}}}=(\overline{\boldsymbol{x}})^{\mathrm{T}} .
$$

Show that $P_{1}^{2} x=P_{1} x$, where $P_{1}^{2}=P_{1} \cdot P_{1}$.
(b) Set

$$
\boldsymbol{S}=\left(\boldsymbol{u}_{1} \boldsymbol{u}_{2} \cdots \boldsymbol{u}_{k}\right)
$$

If $P_{2}=S S^{H}$, show that $P_{2}^{2} x=P_{2} x$.
(c) Show that \boldsymbol{P}_{1} is a matrix of rank k (hint: find $R\left(\boldsymbol{P}_{1}\right)$).
(d) Show that \boldsymbol{P}_{2} is a matrix of rank k (hint: find $R\left(\boldsymbol{P}_{2}\right)$).
(e) Show that $P_{1} x=P_{2} x$ for any $x \in \mathbb{C}^{n}$.
2. Suppose there exist matrices $A, P, D \in \mathbb{C}^{n \times n}$ such that

$$
A P=P D .
$$

If \boldsymbol{P} is invertible, show that $\sigma(\boldsymbol{A})=\sigma(\boldsymbol{D})$.
3. Let $A \in \mathbb{C}^{n \times n}$ be a skew-Hermitian matrix, i.e., $A^{\mathrm{H}}=-A$. Show that all of the eigenvalues are purely imaginary (hint: consider the matrix i A).
4. If

$$
S=\operatorname{Span}\left\{\left(\begin{array}{r}
1 \\
-1 \\
0 \\
2
\end{array}\right),\left(\begin{array}{r}
2 \\
-3 \\
1 \\
-1
\end{array}\right)\right\},
$$

find a projection matrix \boldsymbol{P} such that:
(a) $P: \mathbb{C}^{4} \mapsto S$
(b) $P^{2} x=P x$ for any $x \in \mathbb{C}^{4}$
(c) $P x=0$ for all $x \in S^{\perp}$.

