Math W81: Homework #3

1. Let $\{u_1, u_2, \dots, u_k\}$ be an orthonormal set of vectors.

(a) Set

$$\boldsymbol{P}_1 = \boldsymbol{u}_1 \boldsymbol{u}_1^{\mathrm{H}} + \boldsymbol{u}_2 \boldsymbol{u}_2^{\mathrm{H}} + \dots + \boldsymbol{u}_k \boldsymbol{u}_k^{\mathrm{H}},$$

where for any vector $x \in \mathbb{C}^n$,

$$\mathbf{x}^{\mathrm{H}} = \overline{\mathbf{x}^{\mathrm{T}}} = (\overline{\mathbf{x}})^{\mathrm{T}}.$$

Show that $P_1^2 \mathbf{x} = P_1 \mathbf{x}$, where $P_1^2 = P_1 \cdot P_1$.

(b) Set

$$S = (\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \cdots \ \boldsymbol{u}_k)$$

If $P_2 = SS^H$, show that $P_2^2 x = P_2 x$.

- (c) Show that P_1 is a matrix of rank k (*hint*: find $R(P_1)$).
- (d) Show that P_2 is a matrix of rank k (*hint*: find $R(P_2)$).
- (e) Show that $P_1 x = P_2 x$ for any $x \in \mathbb{C}^n$.
- **2.** Suppose there exist matrices $A, P, D \in \mathbb{C}^{n \times n}$ such that

$$AP = PD.$$

If **P** is invertible, show that $\sigma(\mathbf{A}) = \sigma(\mathbf{D})$.

3. Let $A \in \mathbb{C}^{n \times n}$ be a skew-Hermitian matrix, i.e., $A^{H} = -A$. Show that all of the eigenvalues are purely imaginary (*hint*: consider the matrix iA).

4. If

$$S = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 1 \\ -1 \end{pmatrix} \right\}$$

find a projection matrix *P* such that:

- (a) $\boldsymbol{P}: \mathbb{C}^4 \mapsto S$
- (b) $P^2 x = P x$ for any $x \in \mathbb{C}^4$
- (c) Px = 0 for all $x \in S^{\perp}$.