Math W81: Homework \#1

1. Consider the homogeneous system $\boldsymbol{A x}=\mathbf{0}$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with $m<n$. In other words, \boldsymbol{A} is a $m \times n$ matrix with real-valued coefficients. Explain why this system must always have an infinite number of solutions.
2. Consider the nonhomogeneous system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, i.e., \boldsymbol{A} is a $m \times n$ matrix with real-valued coefficients, and $\boldsymbol{b} \in \mathbb{R}^{m}$ is nonzero.
(a) If x_{1} and x_{2} are two solutions, must it be the case that $5 x_{1}+7 x_{2}$ is also a solution? Why, or why not?
(b) Suppose that $m<n$, and further suppose that the system is consistent. Is it possible for the solution to be unique? Why, or why not?
3. Find all of the solutions to the system

$$
\begin{aligned}
x-3 y+z & =-5 \\
x+2 y+4 z & =5 \\
-3 x+2 y-4 z & =1 .
\end{aligned}
$$

If the system is not consistent, state why.
4. Approximate the Sturm-Liouville problem

$$
y^{\prime \prime}+r(x) y=\lambda w(x) y, \quad y^{\prime}(0)=y^{\prime}(1)=0,
$$

as the generalized eigenvalue problem

$$
\left(\boldsymbol{D}_{2}+R\right) y=\lambda W y
$$

Clearly define what are the matrices D_{2}, R, W and the vector y.
5. For $x, y \in \mathbb{C}^{n}$ we have the inner-product

$$
\langle x, y\rangle=x^{\mathrm{T}} \bar{y} .
$$

Show that the inner-product has the properties:
(a) $\langle\boldsymbol{x}+\boldsymbol{y}, \boldsymbol{z}\rangle=\langle\boldsymbol{x}, \boldsymbol{z}\rangle+\langle\boldsymbol{y}, \boldsymbol{z}\rangle$
(b) $\langle y, x\rangle=\overline{\langle x, y\rangle}$
(c) for $a \in \mathbb{C},\langle a x, y\rangle=a\langle\boldsymbol{x}, \boldsymbol{y}\rangle$, and $\langle\boldsymbol{x}, a \boldsymbol{y}\rangle=\bar{a}\langle\boldsymbol{x}, \boldsymbol{y}\rangle$
(d) $\langle x, x\rangle \in \mathbb{R}$
(e) $\langle\boldsymbol{x}, \boldsymbol{x}\rangle \geq 0$, and $\langle\boldsymbol{x}, \boldsymbol{x}\rangle=0$ if and only if $\boldsymbol{x}=\mathbf{0}$.

