MATH W81: HOMEWORK #1

Group 1: Consider the model given by

$$f(x) = a\cos(\pi x).$$

- (a) For each a > 0 find an interval $I \subset \mathbb{R}$ such that $f: I \mapsto I$.
- (b) Show that there is an increasing sequence $0 < a_1 < a_2 < \cdots$ with $\lim_{n \to \infty} a_n = +\infty$ such that a saddle-node bifurcation occurs when when $a = a_j$. Further show that the sequence is alternating in the sense that the new fixed points are negative for a_j and positive for a_{j+1} .
- (c) Show that for each fixed point there is an a^* such that a flip bifurcation occurs when $a = a^*$.
- (d) For $0.1 \le a \le 6$ numerically generate a bifurcation diagram, as well as a plot of the Lyapunov exponent. Compare and contrast your results when compared to those for the logistic map. Do not be afraid to do a thorough exploration! Explain the discrepancies between what you see here and what you see for the logistic map.

Group 2: Consider the tent map given by

$$f(x) = \begin{cases} ax, & 0 \le x < 1/2\\ a(1-x), & 1/2 < x \le 1. \end{cases}$$

- (a) Find a^* such that $f: [0,1] \mapsto [0,1]$ for $0 \le a \le a^*$.
- (b) Find all of the fixed points for $0 \le a < 1$. Determine their stability.
- (c) Find all of the fixed points for $1 < a \leq a^*$. Determine their stability.
- (d) Find all of the period-2 points for $1 < a \leq a^*$. Determine their stability.
- (e) Suppose that for $1 < a \le a^*$ you have a period-N point for some N. Determine the stability (first try this for a = 2).
- (f) Numerically generate the bifurcation diagram, as well as a plot of the Lyapunov exponent, for $0 < a \le a^*$. For which values of a do you suspect that the solutions are chaotic?
- (g) Analytically compute the Lyapunov exponent. Does this computation agree with the numerics?

Group 3: When modeling the dynamics of a blood cell population the mapping is given by

$$f(x) = ax + \tilde{b}x^s \mathrm{e}^{-\tilde{r}x},$$

where x_n represents the population at time n, 0 < a < 1 is the destruction coefficient, and b, s, r > 0. The term $p(x) = \tilde{b}x^s e^{-\tilde{r}x}$ is called the production function.

(a) Show that the dynamical system

$$x_{n+1} = f(x_n)$$

is equivalent to

$$y_{n+1} = g(y_n), \quad g(y) = ay + by^s e^{-y}.$$

Explicitly determine b in terms of \tilde{b}, \tilde{r} . Henceforth only consider the system $y_{n+1} = g(y_n)$.

(b) For each 0 < a < 1 and b, s > 0 show that there is an interval $I \subset \mathbb{R}^+$ such that $g: I \mapsto I$.

- (c) If s = 1, find all of the fixed points and determine their stability.
- (d) If s = 1, find the parameter values for which a flip bifurcation occurs.
- (e) If s = 1, numerically generate a bifurcation diagram, as well as a plot of the Lyapunov exponent. Compare and contrast your results when compared to those for the logistic map. Do not be afraid to do a thorough exploration!
- (f) Suppose that s = 4, and set

$$p(y) = by^4 \mathrm{e}^{-y}.$$

- Show that there is a $b^* > 0$ such that if $b > b^*$, then p(y) has two inflection points which lie above the line z = y.
- Show that if $b > b^*$ then there exist two positive fixed points, say $0 < y_1 < y_2$.
- As $a \to 0^+$ the fixed point $y_2 \to y_2^*$. Derive a condition which ensures that $p'(y_2^*) < -1$.
- Suppose that *b* is chosen so that the production function satisfies:

(a) p(y) has two inflection points which lie above the line z = y(b) $p'(y_2^*) < -1$.

Show that there is a unique $0 < a^* < 1$ such that the fixed point y_2 undergoes a flip bifurcation when $a = a^*$.

• For $a < a^*$ numerically generate a bifurcation diagram, as well as a plot of the Lyapunov exponent. Compare and contrast your results when compared to those for the logistic map. Do not be afraid to do a thorough exploration!

Group 4: Consider the Gaussian map given by

$$f(x) = \tilde{a} + e^{-\tilde{b}x^2}.$$

(a) Show that the dynamical system

$$x_{n+1} = f(x_n)$$

is equivalent to

$$y_{n+1} = g(y_n), \quad g(y) = a + be^{-y^2}.$$

Explicitly determine a, b in terms of \tilde{a}, \tilde{b} . Henceforth only consider the system $y_{n+1} = g(y_n)$.

- (b) For each $a \in \mathbb{R}$ and b > 0 find an interval $I \subset \mathbb{R}$ such that $g: I \mapsto I$.
- (c) If a > 0 is fixed, show that:
 - there is a unique fixed point $x^* > 0$
 - there is a $b_1 > 0$ such that x^* is unstable for $b > b_1$
 - there is a $0 < b_2 \leq b_1$ such that a flip bifurcation occurs at $b = b_2$.
- (d) If a < 0 is fixed, show that:
 - there is a $0 < b_1 < b_2$ such that saddle-node bifurcations occur at $b = b_1$ and $b = b_2$
 - if $b_1 < b < b_2$, then there are two negative fixed points, say $x_2 < x_1 < 0$
 - no flip bifurcation can occur at $x = x_1, x_2$ for any value of b.
- (e) For each fixed $b \in \{1, 2, ..., 9\}$ and $-3 \le a \le 2$ numerically generate a bifurcation diagram, as well as a plot of the Lyapunov exponent. Compare and contrast your results when compared to those for the logistic map. Discuss the manner in which the various values of b effect your results. Do not be afraid to do a thorough exploration!

Group 5: The shift map is given by

 $f(x) = Nx \pmod{1}, \quad N \in \mathbb{N}.$

(a) For any $N \in \mathbb{N}$ show that

 $f^n(x) = N^n x \pmod{1}.$

- (b) For any $N \in \mathbb{N}$ show that periodic points are dense in [0, 1). If possible, give them explicitly for N = 2.
- (c) For any $N \in \mathbb{N}$ show that there is sensitive dependence upon initial conditions, i.e., there is a $\beta > 0$ such that for any $x_0 \in (0, 1)$ and any open interval $I \subset (0, 1)$ containing x_0 there is a $y_0 \in I$ and $n \in \mathbb{N}$ such that

$$|f^n(x_0) - f^n(y_0)| > \beta.$$

- (d) For any $N \in \mathbb{N}$ show that f is transitive on [0, 1], i.e., show that for any intervals $I_1, I_2 \subset [0, 1]$ there is a point $x_0 \in I_1$ and $n \in \mathbb{N}$ such that $f^n(x_0) \in I_2$. In conclusion, as a consequence of (b)-(d) one knows that the dynamics of the shift map are chaotic.
- (e) If possible, analytically compute the Lyapunov exponent associated with the dynamics. If it is not possible, compute this exponent numerically.
- (f) For a given $x \in [0, 1)$, represent x in its base N form as $a_0a_1a_2...$, where $a_j \in \{0, 1, ..., N-1\}$. Using this representation of x, give a formula for f(x).
- (g) Suppose that N = 2. If possible, verify that non-periodic orbits generated by a computer eventually end up fixed at 0. Give an explanation for this unexpected phenomena.
- (h) Suppose that N = 2. Set

$$y_n = \sin^2(\pi x_n).$$

Show that

$$y_{n+1} = 4y_n(1 - y_n);$$

hence, solutions to the logistic map with a = 4 exhibit chaotic behavior.