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1. Fundamental Concepts

Complex analysis is fundamental in areas as diverse as:

(a) mathematical physics

(b) applied mathematics

(c) number theory;

in addition, it is an interesting area in its own right.

1.1. Elementary properties of the complex numbers

Definition 1.1. A complex number z ∈ C is denoted by x + iy, where x, y ∈ R and i2 = −1. One has that

Re z B x, Im z B y

are the real and imaginary parts of z. The complex conjugate of z is given by

z̄ B x − iy.

Let zj = xj + iyj for j = 1,2. The algebraic operations are given by

z1 + z2 B (x1 + x2) + i(y1 + y2), z1 · z2 B (x1x2 − y1y2) + i(x1y2 + x2y1).

It is easy to check that

(a) Re z = (z + z̄)/2

(b) Im z = (z − z̄)/2i

(c) z +w = z̄ + w̄

(d) z ·w = z̄ · w̄

Definition 1.2. The modulus, or absolute value, of z is given by

|z| B
√
z · z̄ =

√
x2 + y2.

Remark 1.3. Note that |Re z| ≤ |z| and | Im z| ≤ |z|.
Concerning division, note that

1
z

=
z̄

|z|2
,

so that every nonzero complex number has a multiplicative inverse. As such, one can write

z

w
=
z · w̄

|w|2
.

1.2. Further properties of the complex numbers

Recall that

ex =

∞∑
n=0

xn

n!
, sin x =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
, cos x =

∞∑
n=0

(−1)n
x2n

(2n)!
.

One can then define for z ∈ C

ez B
∞∑
n=0

zn

n!
.
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Upon using the fact that i2 = −1 it is not difficult to check that

eiy = cos y + i sin y.

Furthermore, one can formally manipulate the power series to show that

ez B ex (cos y + i sin y).

From this definition it is then not difficult to show that

ez · ew = ez+w.

Now, note that |eiy| = 1. Since

z = |z| ·

(
z

|z|

)
= z · ξ, |ξ | = 1,

there is an angle θ B arg z such that z = reiθ, where r = |z|. This representation is not unique, as eiθ = ei(θ+2kπ)

for any k ∈ Z. One typically assumes that arg z ∈ [0,2π).
Finally, if z = reiθ and w = seiψ, then

z ·w = rsei(θ+ψ).

Thus, multiplication has the following geometry:

x

y

θ

ψ
θ + ψ

z
w

z ·w

Proposition 1.4 (Triangle inequality). If z,w ∈ C, then |z +w| ≤ |z| + |w|.

Proof: One can calculate that

|z +w|2 = (z +w) · (z̄ + w̄)

= |z|2 + |w|2 + z · w̄ + z̄ ·w

= |z|2 + |w|2 + 2 Re(z · w̄)

≤ |z|2 + |w|2 + 2|z| · |w|

= (|z| + |w|)2. �

Proposition 1.5 (Cauchy-Schwartz Inequality). If z1, . . . , zn , w1, . . . , wn ∈ C, then∣∣∣∣∣∣∣
n∑
j=1

zj ·wj

∣∣∣∣∣∣∣
2

≤

n∑
j=1

|zj |
2

n∑
j=1

|wj |
2.

Proof: See [8, Proposition 1.2.4]. �

Remark 1.6. From now on we will write zw B z ·w.
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1.3. Complex polynomials

A complex polynomial is of the form

f (z, z̄) =
∑

a`mz
`z̄m ,

where a`m ∈ C. A complex polynomial can be written as f (x, y) = u(x, y) + iv(x, y), where u and v are of the
form

∑
b`mx`ym , with b`m ∈ R.

Definition 1.7. Let U ⊂ R2 be open. A continuous function f U 7→ R is C1 (or continuously differentiable)
on U if fx B ∂f/∂x and fy B ∂f/∂y exist and are continuous on U . In this case we write f ∈ C1(U ).

Definition 1.8. f ∈ Ck(U ) for k = 1,2, . . . if f and all the partial derivatives up to and including order k
exist and are continuous on U .

Definition 1.9. f = u + iv : U 7→ C is Ck(U ) if u, v ∈ Ck(U ).

We now wish to define a reasonable derivative for complex polynomials. Set

∂

∂z
B

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
B

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Since z = x + iy and z̄ = x − iy it can be checked that

∂

∂z
z = 1,

∂

∂z
z̄ = 0;

∂

∂z̄
z = 0,

∂

∂z̄
z̄ = 1.

Note that
∂

∂z
f =

1
2

(ux + vy) +
i
2

(−uy + vx ),
∂

∂z̄
f =

1
2

(ux − vy) +
i
2

(uy + vx ).

Proposition 1.10. The operators
∂

∂z
,

∂

∂z̄

are linear and satisfy the product rule.

Proposition 1.11. Set
p(z, z̄) =

∑
a`mz

`z̄m .

p contains no z̄ terms if and only if ∂p/∂z̄ = 0.

Proof: Suppose that a`m = 0 for all m > 0, so that

p(z, z̄) =
∑

a`0z
`.

As a consequence of the product rule one then has that

∂

∂z̄
p =

∑
a`0`z

`−1 ∂

∂z̄
z = 0.

Now suppose that ∂p/∂z̄ = 0. One then has that

∂`+m

∂z`∂z̄m
p = 0

for any m ≥ 1. But,
∂`+m

∂z`∂z̄m
p(0,0) = `!m!a`m ,

so that a`m = 0 for any m ≥ 1. �
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1.4. Holomorphic functions, and Cauchy-Riemann equations, and harmonic functions

Definition 1.12. f ∈ C1(U ) is holomorphic (analytic) if

∂

∂z̄
f = 0

at every point of U .
Remark 1.13. A polynomial is holomorphic if and only if it is a function of z alone.
Lemma 1.14. f = u + iv ∈ C1(U ) is holomorphic if and only if it satisfies the Cauchy-Riemann equations

ux = vy, uy = −vx

at every point of U .

Proof: This follows immediately from the fact that

∂

∂z̄
f =

1
2

(ux − vy) +
i
2

(uy + vx ). �

Corollary 1.15. If f is holomorphic, then
∂

∂z
f = fx = −ify

on U .

Proof: By definition
∂

∂z
f =

1
2

(ux + vy) +
i
2

(−uy + vx ).

By the Cauchy-Riemann equations the above can be rewritten as

∂

∂z
f = ux + ivx = −i(uy + ivy). �

Now suppose that f is holomorphic and satisfies the Cauchy-Riemann equations. If f ∈ C2(U ), then by
applying the appropriate derivatives to the Cauchy-Riemann equations one gets that

uxx + uyy = 0, vxx + vyy = 0.

Definition 1.16. The Laplace operator (Laplacian) is given by

∆ B
∂2

∂x2 +
∂2

∂y2 .

If u ∈ C2(U ), then u is called harmonic if ∆u = 0 on U .
Remark 1.17. It can be checked that

∆ = 4
∂

∂z̄

∂

∂z
= 4

∂

∂z

∂

∂z̄
.

Lemma 1.18. Let u(x, y) be a real-valued harmonic polynomial. There is a holomorphic polynomial Q(z)
such that u = ReQ.

Proof: Recall that
x = Re z =

1
2

(z + z̄), y = Im z =
1
2i

(z − z̄),

Set
P(z, z̄) B u

(z + z̄

2
,
z − z̄

2i

)
=

∑
a`mz

`z̄m .

Since u is harmonic, one has that
∂`+m

∂z̄`∂z̄m
P = 0



7 Todd Kapitula

for any ` ≥ 1 and m ≥ 1. Thus, a`m = 0 for ` ≥ 1 and m ≥ 1, so that

P(z, z̄) = a00 +
∑
`≥1

a`0z
` +

∑
m≥1

a0m z̄
m .

Since P is real-valued, one has that P = P̄; hence,

a00 = a00, a`0 = a0`.

Note that this implies that a00 ∈ R. Thus,

P(z, z̄) = a00 +
∑
`≥1

a`0z
` +

∑
`≥1

a`0z̄
`

= Re(a00 + 2
∑
`≥1

a`0z
`)

B ReQ(z). �

Example. Let us give an explicit description of all real-valued harmonic polynomials of second degree. By
the above lemma it is known that u = ReQ, where Q is a holomorphic second degree polynomial. Since

Q(z) = a0 + a1z + a2z
2, aj ∈ C,

by setting aj B aj,r + iaj,i, and using that fact that z2 = x2 − y2 + i2xy, it is seen that

ReQ = a0,r + a1,rx − a1,iy + a2,r(x2 − y2) − 2a2,ixy,

i.e., a holomorphic second degree polynomial is a linear combination of 1, x, y, x2 − y2, xy.

1.5. Real and holomorphic antiderivatives

Lemma 1.19. Let U be an open convex set, and suppose that f, g ∈ C1(U ) satisfy fy = gx . There is a function
h ∈ C2(U ) such that f = hx and g = hy. Furthermore, if f and g are real-valued, then so is h.

Proof: A Math 311 problem (see [8, Theorem 1.5.1]). �

Remark 1.20. By setting f = −uy and g = ux , it is seen from the above that if u is harmonic, then there is
a function v such that

vx = −uy, vy = ux .

By setting f = u + iv, one then gets that f is holomorphic. Hence, if u is harmonic there is a holomorphic
function f such that u = Re f .

Theorem 1.21. Let U be an open convex set, and suppose that f is holomorphic on U . There is a holomor-
phic function F such that f = ∂F/∂z.

Proof: Since f satisfies the Cauchy-Riemann equations, there exist functions h1, h2 ∈ C2(U ) such that

u =
∂

∂x
h1 =

∂

∂y
h2, v =

∂

∂x
h2 = −

∂

∂y
h1.

Set F = h1 + ih2. It is clear that F satisfies the Cauchy-Riemann equations. Furthermore,

∂

∂z
F = Fx = u + iv = f. �
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2. Complex Line Integrals

2.1. Real and complex line integrals

Definition 2.1. φ : [a, b] 7→ R satisfies φ ∈ C1([a, b]) if

(a) φ′ exists and is continuous on (a, b)

(b) limt→a+ φ′(t) and limt→b− φ′(t) exist.

Definition 2.2. Let γ B γ1 + iγ2 : [a, b] 7→ C. We write γ ∈ C1([a, b]) if γ1, γ2 ∈ C1([a, b]). In this case

dγ
dt

=
dγ1

dt
+ i

dγ2

dt
(= γ′(t)).

Remark 2.3. Note that if γ ∈ C1([a, b]), then

γ(b) − γ(a) =

∫ b

a
γ′(t) dt,

where ∫ b

a
γ′(t) dt =

∫ b

a
γ′1(t) dt + i

∫ b

a
γ′2(t) dt.

Let U ⊂ C be open, and let γ : [a, b] 7→ U be C1. Suppose that f = u + iv : U 7→ C and f ∈ C1(U ) is
holomorphic. Upon setting

u(γ(t)) B u(γ1(t), γ2(t)), v(γ(t)) B v(γ1(t), γ2(t)),

an application of the chain rule yields that

u(γ(b)) − u(γ(a)) =

∫ b

a
{
∂u

∂x
(γ(t))γ′1(t) +

∂u

∂y
(γ(t))γ′2(t)} dt

(similar statement for v). By using the Cauchy-Riemann equations it is seen that

f (γ(b)) − f (γ(a)) =

∫ b

a

∂f

∂x
(γ(t))γ′(t) dt

=

∫ b

a

∂f

∂z
(γ(t))γ′(t) dt.

Definition 2.4. Let U ⊂ C be open, and let γ : [a, b] 7→ U be C1. If F : u 7→ C is continuous, the complex
line integral is defined by ∮

γ
F (z) dz B

∫ b

a
F (γ(t))γ′(t) dt.

Proposition 2.5. If f is holomorphic on U , then

f (γ(b)) − f (γ(a)) =

∮
γ

∂f

∂z
(z) dz.

Remark 2.6. One has:

(a) The above proposition can be restated to say that holomorphic functions satisfy a version of the
Fundamental Theorem of Calculus.

(b) The result is independent of the "speed" at which the path γ(t) is traversed.
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2.2. Complex differentiability and conformality

Definition 2.7. Let U ⊂ C be open, and let f : U 7→ C. If the limit exists, for z0 ∈ U one writes

f ′(z0) B lim
z→z0

f (z) − f (z0)
z − z0

.

Theorem 2.8. Let U ⊂ C be open, and suppose that f is holomorphic on U . Then f ′ exists at each point of
U , and

f ′(z) =
∂f

∂z
.

Remark 2.9. As a consequence of the previous proposition, holomorphic functions satisfy the Fundamental
Theorem of Calculus, i.e.,

f (γ(b)) − f (γ(a)) =

∮
γ
f ′(z) dz.

Proof: Let z0 ∈ U be given. Since U is open, there is a δ > 0 such that the set

B(z0, δ) B {z ∈ U : |z − z0| < δ} ⊂ U.

Pick z ∈ B(z0, δ), and define
γ(t) = z0 + (z − z0)t;

note that γ : [0,1] 7→ B(z0, δ) with γ(0) = z0 and γ(1) = z. Since

f (z) − f (z0) =

∮
γ

∂f

∂z
dz

=

∫ 1

0

∂f

∂z
(γ(t))(z − z0) dt,

one gets that

f (z) − f (z0)
z − z0

=

∫ 1

0

∂f

∂z
(γ(t)) dt

=
∂f

∂z
(z0) +

∫ 1

0

[
∂f

∂z
(γ(t)) −

∂f

∂z
(z0)

]
dt.

Since f ∈ C1(U ), for each ϸ > 0 there is a δ > 0 such that for w ∈ B(z0, δ) one has∣∣∣∣∣∂f∂z (w) −
∂f

∂z
(z0)

∣∣∣∣∣ < ϸ.
In particular, since |γ(t) − z0| = t |z − z0| < δ for t ∈ [0,1], one has that∣∣∣∣∣∂f∂z (γ(t)) −

∂f

∂z
(z0)

∣∣∣∣∣ < ϸ.
Hence, ∣∣∣∣∣ f (z) − f (z0)

z − z0
−
∂f

∂z
(z0)

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

0

[
∂f

∂z
(γ(t)) −

∂f

∂z
(z0)

]
dt

∣∣∣∣∣∣
≤

∫ 1

0
ϸ dt = ϸ,

which shows that the limit exists and equals (∂f/∂z)(z0). �

Theorem 2.10. Suppose that f ∈ C(U ) is such that f ′ exists at each point of U . Then f is holomorphic on
U .
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Remark 2.11. As a consequence, f is holomorphic if and only if f ′ exists.

Proof: We need to check that the Cauchy-Riemann equations are satisfied. Suppose that h ∈ R. One then
has that

lim
z→z0

f (z) − f (z0)
z − z0

= lim
h→0

f (z0 + h) − f (z0)
h

= lim
h→0

u(x0 + h, y0) − u(x0, y0)
h

+ i lim
h→0

v(x0 + h, y0) − v(x0, y0)
h

=
∂f

∂x
(x0, y0).

Similarly,

lim
z→z0

f (z) − f (z0)
z − z0

= −i
∂f

∂y
(x0, y0).

Thus, fx (x0, y0) = −ify(x0, y0), which implies that the Cauchy-Riemann equations hold. �

2.3. Antiderivatives revisited

Let U ⊂ C be an open convex set, let f : U 7→ C be holomorphic, and let z0 ∈ U be fixed. For z ∈ U set

F (z) B


f (z) − f (z0)
z − z0

, z ∈ U\{z0},

f ′(z0), z = z0.

Since f is holomorphic, F is continuous on U ; furthermore, it is holomorphic on U\{z0}. The appropriate
modification of Theorem 1.21 (see [8, Theorem 2.3.2]) yields:
Theorem 2.12. There is a holomorphic H on U such that H ′(z) = F (z).

2.4. The Cauchy integral formula and the Cauchy integral theorem

Definition 2.13. For P ∈ C fixed, set

D(P, r) B {z ∈ C : |z − P | < r}, D(P, r) B {z ∈ C : |z − P | ≤ r},

and
∂D(P, r) B {z ∈ C : |z − P | = r}.

Remark 2.14. Note that ∂D(P, r) can be parameterized as the curve γ : [0,1] 7→ ∂D(P, r) by setting

γ(t) B P + re2πit .

This is a counterclockwise orientation for γ, and unless stated explicitly otherwise, this is the orientation
that will always be assumed.
Lemma 2.15. Let z ∈ D(z0, r), and let γ be ∂D(z0, r). Then

1
2πi

∮
γ

1
ζ − z

dζ = 1.

Proof: Set
I(z) B

1
2πi

∮
γ

1
ζ − z

dζ.

Setting γ(t) = z0 + re2πit yields that

I(z0) =
1

2πi

∫ 1

0

2πie2πit

e2πit dt

= 1.
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Let us now show that I(z) is independent of z. Upon doing so, the lemma will be proved. First, we have
that

∂

∂z̄
I(z) =

1
2πi

∮
γ

∂

∂z̄

(
1

ζ − z

)
dζ = 0,

so that I(z) is holomorphic on D(z0, r). Similarly, upon using the Fundamental Theorem of Calculus,

∂

∂z
I(z) =

1
2πi

∮
γ

∂

∂z

(
1

ζ − z

)
dζ

= −
1

2πi

∮
γ

d
dζ

(
1

ζ − z

)
dζ

= −

(
1

γ(1) − z
−

1
γ(0) − z

)
= 0.

Hence, I(z) is constant. �

Remark 2.16. One has that:

(a) if the contour is traversed in the clockwise direction, then

I(z) = −2πi.

(b) the same argument yields
1

2πi

∮
γ

1
(ζ − z)k+1 dζ = 0

for any k ∈ N.

Theorem 2.17 (Cauchy Integral Formula). Let U ⊂ C be open, and suppose that f : U 7→ C is holomorphic.
Let z0 ∈ U , and let r > 0 be such that D(z0, r) ⊂ U . Let γ(t) = z0 + re2πit . For each z ∈ D(z0, r) one has

f (z) =
1

2πi

∮
γ

f (ζ )
ζ − z

dζ.

Remark 2.18. One has:

(a) f (z) is determined by the values of f on ∂D(z0, r)

(b) it will later be seen that if f is given by the Cauchy integral formula, then it is holomorphic

Proof: Choose ϸ > 0 so that D(z0, r +ϸ) ⊂ U , and fix z ∈ D(z0, r +ϸ). By Theorem 2.12 there is a holomorphic
function H : D(z0, r + ϸ) 7→ C such that

H ′(ζ ) =


f (ζ ) − f (z)
ζ − z

, ζ , z,

f ′(z), ζ = z.

Now choose z ∈ D(z0, r). By the Fundamental Theorem of Calculus one has

0 =

∮
γ
H ′(ζ ) dζ =

∮
γ

f (ζ ) − f (z)
ζ − z

dζ ;

hence, ∮
γ

f (ζ )
ζ − z

dζ =

∮
γ

f (z)
ζ − z

dζ.

An evaluation of the second integral yields that∮
γ

f (z)
ζ − z

dζ = f (z)
∮
γ

1
ζ − z

dζ = 2πif (z). �



Complex Variable Class Notes 12

Theorem 2.19 (Cauchy Integral Theorem). Let U ⊂ C be an open convex set, let f : U 7→ C be holomorphic,
and let γ : [a, b] 7→ U be C1 with γ(a) = γ(b). Then∮

γ
f (z) dz = 0.

Proof: There is a holomorphic function F : U 7→ C such that F ′ = f . By the Fundamental Theorem of
Calculus,

0 = F (γ(b)) − F (γ(a)) =

∮
γ
F ′(z) dz,

which proves the result. �

Example. One has:

(a) Necessity of holomorphicity: Consider∮
γ

ζ̄

ζ − 1
dζ, γ = ∂D(1,1).

It can be checked that this integral is zero. Note, however, that∮
γ

ζ

ζ − 1
dζ = 2πi.

(b) Importance of orientation: In the proof of Theorem 2.17 the orientation of the curve plays a role
via Lemma 2.15. If the curve were traversed in a clockwise direction, then as a consequence of
Remark 2.16 one would see that

f (z) = −
1

2πi

∮
γ

f (ζ )
ζ − z

dζ.

2.6. An introduction to the Cauchy integral theorem and the Cauchy integral formula for more

general curves

Definition 2.20. A piecewise C1 curve γ : [a, b] 7→ C is a continuous curve such that there exists a finite
set a = a1 < a2 < · · · < ak = b with the property that γ |[aj ,aj+1] is a C1 curve.
Definition 2.21. Let U ⊂ C be open, and suppose that γ : [a, b] 7→ U is a piecewise C1 curve. If f ∈ C(U ),
then ∮

γ
f (z) dz =

k∑
j=1

∮
γ |[aj ,aj+1]

f (z) dz.

Lemma 2.22. Suppose that f : U 7→ C is holomorphic, and suppose that γ : [a, b] 7→ U is a piecewise C1

curve. Then
f (γ(b)) − f (γ(a)) =

∮
γ
f ′(z) dz.

Proof: The result is true over each segment γ |[aj ,aj+1]. The definition of the integral yields the final result. �

Let f : U 7→ C be holomorphic, and let γ, µ be piecewise C1 curves contained in U . Suppose that there
is a disk D(z0, r) ⊂ U such that outside this disk, γ = µ. Recall that there is a holomorphic function F such
that F ′ = f on D(z0, r), so that the Fundamental Theorem of Calculus applies. Inside the disk one must
then have that ∮

γ∩D(z0,r)
f (z) dz =

∮
µ∩D(z0,r)

f (z) dz.

Since the two curves coincide outside D(z0, r), one then has that∮
γ
f (z) dz =

∮
µ
f (z) dz.
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Proposition 2.23. Let 0 < r < R < +∞, and define the annulus

A B {z ∈ C : r < |z| < R}.

Let f : A 7→ C be holomorphic. If r < r1 < r2 < R, and if γrj B ∂D(0, rj) traversed in the counterclockwise
direction, then ∮

γr1

f (z) dz =

∮
γr2

f (z) dz.

Proof: Continuously deform one circle into the other, and use the above argument. �

Remark 2.24. The curves actually only need to be such that they can be continuously deformed to a circle
which is entirely contained in the open set U .
Theorem 2.25. Let U ⊂ C be open, and let f : U 7→ C be holomorphic. Let γ ⊂ U be a piecewise C1 closed
curve which can be continuously deformed in U to a closed curve lying entirely in a disc contained in U .
Then ∮

γ
f (z) dz = 0.

Suppose that D̄(z, r) ⊂ U , and suppose γ ⊂ U\{z} can be continuously deformed in U\{z} to ∂D(z, r) equipped
with the counterclockwise orientation. Then

f (z) =
1

2πi

∮
γ

f (ζ )
ζ − z

dζ.

Example. Let γ be the square centered at the origin with sides of length six, equipped with the counter-
clockwise orientation. By the above theorem,∮

γ

5
(ζ − 1)(ζ − 2i)

dζ =

∮
∂D(0,3)

5
(ζ − 1)(ζ − 2i)

dζ.

Thus, ∮
∂D(0,3)

5
(ζ − 1)(ζ − 2i)

dζ =

∮
∂D(0,3)

1 − 2i
ζ − 1

dζ −
∮
∂D(0,3)

1 − 2i
ζ − 2i

dζ

= 0.

3. Applications of the Cauchy Integral

3.1. Differentiability properties of holomorphic functions

Theorem 3.1. Let φ be continuous on ∂D(P, r). The function

f (z) =
1

2πi

∮
∂D(P,r)

φ(ζ )
ζ − z

dζ

is defined and holomorphic on D(P, r).
Remark 3.2. First suppose that P = 0, r = 1, and φ(ζ ) = ζ̄ . It is easy to check that f (z) = 0 for all
z ∈ D(0,1), and hence has no real relation to φ(z). Now suppose that φ(z) is holomorphic in a neighborhood
of D(P, r). As an application of Theorem 2.17 one immediately sees that f (z) = φ(z) for all z ∈ D(P, r).

Proof: Set
g(ζ ) B

φ(ζ )
ζ − z

.

Since z ∈ D(P, r), it is clear that g(ζ ) is continuous on ∂D(P, r); hence, f is well-defined. Now set

h(z) B
φ(ζ )
ζ − z

.
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Since |ζ −z| ≥ r−|z−P | > 0 for all ζ ∈ ∂D(P, r), one has that h(w)→ h(z) asw → z uniformly over ζ ∈ ∂D(P, r).
Thus, one can interchange the order of the limit and integration to get

∂f

∂z
(z) =

1
2πi

∂

∂z

∮
∂D(P,r)

φ(ζ )
ζ − z

dζ

=
1

2πi

∮
∂D(P,r)

∂

∂z

φ(ζ )
ζ − z

dζ

=
1

2πi

∮
∂D(P,r)

φ(ζ )
(ζ − z)2 dζ,

and similarly,

∂f

∂z̄
(z) =

1
2πi

∮
∂D(P,r)

∂

∂z̄

φ(ζ )
ζ − z

dζ

= 0.

Hence, f is holomorphic for all z ∈ D(P, r), and as a consequence of Theorem 2.8 one has that

f ′(z) =
1

2πi

∮
∂D(P,r)

φ(ζ )
(ζ − z)2 dζ. �

Remark 3.3. This argument shows that f is differentiable to any order, with

f (k)(z) =
k!
2πi

∮
∂D(P,r)

φ(ζ )
(ζ − z)k+1 dζ.

Corollary 3.4. Let U ⊂ C be an open set, and let f : U 7→ C be holomorphic. Then f ∈ C∞(U ). Furthermore,
if D(P, r) ⊂ U and z ∈ D(P, r), then

f (k)(z) =
k!
2πi

∮
∂D(P,r)

f (ζ )
(ζ − z)k+1 dζ.

Proof: Follows from the above theorem and the representation of holomorphic functions given in Theo-
rem 2.17. �

Corollary 3.5. If f : U 7→ C is holomorphic, then f (k) : U 7→ C is holomorphic.

Proof: The result follows immediately upon applying the proof of Theorem 3.1 to the representation of f (k)(z)
given in Corollary 3.4. �

3.2. Complex power series

For a holomorphic function f , if given p ∈ U we can now formally write a power series of the form
∞∑
n=0

f (n)(p)
n!

(z − p)n.

Two questions:

(a) Does the series converge?

(b) If it does converge, does it converge to f (z)?

Remark 3.6. The student should review power series from Math 163!
Definition 3.7. Let P ∈ C be fixed. A complex power series is of the form

∞∑
n=0

an(z − P)n ,

where the {ak}∞k=0 are complex constants.
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Lemma 3.8 (Abel). If a power series converges at some point z, then it converges for each w ∈ D(P, r), where
r = |z − P |.

Proof: Since the power series converges, one has that |ak(z − P)k | → 0 as k → ∞; hence, there is an M > 0
such that |ak(z − P)k | ≤ M for all k. This in turn implies that |ak | ≤ Mr−k for all k. For each k one has

|ak(w − P)k | ≤ |ak | |w − P |k ≤ M
(
|w − P |

r

)k
;

hence, for fixed w ∈ D(P, r) one has that the geometric series
∑

(|w − P |/r)k converges. The series itself then
converges, as it converges absolutely. �

Definition 3.9. For a power series, set

r B sup{|w − P | :
∑

an(w − P)n converges}.

Then r is the radius of convergence of the power series, and D(P, r) is the disk of convergence.
Lemma 3.10. A power series with radius of convergence r converges for each w ∈ D(P, r), and diverges for
each w such that |w − P | > r.

Proof: This is a restatement of Abel’s lemma. �

Lemma 3.11 (Ratio test). The radius of convergence of the power series is given by

1
r

= lim sup
k→∞

∣∣∣∣∣ak+1

ak

∣∣∣∣∣ .
Proof: See any textbook in Analysis. �

Remark 3.12. By the root test, the radius of convergence is given by

1
r

= lim sup
k→∞
|ak |

1/k.

The series
∑∞
k=0 fk(z) is uniformly Cauchy on a set U if for each ϸ > 0 there is an N such that if n ≥ m > N ,

then ∣∣∣∣∣∣∣
n∑

k=m

fk(z)

∣∣∣∣∣∣∣ < ϸ, z ∈ U.

It is known that the a uniformly Cauchy series converges uniformly on U to some limit function. Following
the proof of Abel’s lemma, it is easy to check that the power series

∑
ak(z − P)k converges uniformly and

absolutely on D(P, R), where 0 < R < r and r is the radius of convergence. Hence, there is an f (z) such that

f (z) =

∞∑
k=0

ak(z − P)k , |z − P | < r.

Lemma 3.13. Consider

f (z) =

∞∑
k=0

ak(z − P)k , |z − P | < r,

where r > 0 is the radius of convergence. Then f is holomorphic on D(P, r). Furthermore, for each n ≥ 1
one can differentiate termwise to get,

f (n)(z) =

∞∑
k=n

k(k − 1) . . . (k − n + 1)ak(z − P)k−n , z ∈ D(P, r).

Remark 3.14. Evaluation at z = P reveals f (n)(P) = n!an.
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Proof: Without loss of generality suppose that P = 0. It will be shown only for n = 1, as the rest follows
from an induction argument. Let z ∈ D(0, r) be fixed, and let |h | ≤ (r − |z|)/2. Consider

f (z + h) − f (z) =

∞∑
k=1

[ak(z + h)k − akzk].

Since zk is holomorphic, one can write

(z + h)k − zk = hk

∫ 1

0
(z + th)k−1 dt;

hence,
f (z + h) − f (z)

h
=

∞∑
k=1

kak

∫ 1

0
(z + th)k−1 dt. (3.1)

Note that

lim
h→0

∫ 1

0
(z + th)k−1 dt = zk−1.

Now,

|

∫ 1

0
(z + th)k−1 dt | ≤ (|z| + |h |)k−1,

so that

|kak

∫ 1

0
(z + th)k−1 dt | ≤ k|ak |(|z| + |h |)k−1

≤ k|ak |

(
r + |z|

2

)k−1

.

By the ratio test the series
∑
k|ak |((r + |z|)/2)k−1 converges, so by the Weierstrass M-test the series in

equation (3.1) converges uniformly in h. Hence, upon taking the limit as h → 0, and interchanging the limit
and the summation, one gets that

lim
h→0

f (z + h) − f (z)
h

=

∞∑
k=1

kakz
k−1.

By the ratio test the series on the right-hand side also converges uniformly for z ∈ D(0, r). �

Lemma 3.15. Suppose that
∑
ak(z − P)k and

∑
bk(z − P)k converge on D(P, r), and suppose that∑

ak(z − P)k =
∑

bk(z − P)k , z ∈ D(P, r).

Then ak = bk for all k.

Proof: Differentiate term-by-term and evaluate at z = P to get the result. �

Remark 3.16. As a consequence, a power series on D(P, r) is unique.

3.3. The power series expansion for a holomorphic function

We now know that a power series defines a holomorphic function. Furthermore, a holomorphic function
has a formal power series. If the formal power series converges, then by the uniqueness lemma one has
that a function is holomorphic on D(p, r) if and only if

f (z) =

∞∑
n=0

f (n)(p)
n!

(z − p)n , z ∈ D(p, r).
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Theorem 3.17. Let U ⊂ C be open, and let f : u 7→ C be holomorphic. Let P ∈ U , and suppose that
D(P, r) ⊂ U . Then

f (z) =

∞∑
n=0

f (n)(p)
n!

(z − p)n , z ∈ D(p, r).

Remark 3.18. If r̂ is the distance from P to C\U , then the power series will converge at least on D(P, r̂).

Proof: Assume without loss of generality that P = 0. Given z ∈ D(0, r), choose |z| < r ′ < r, so that
z ∈ D(0, r ′) ⊂ D(0, r ′) ⊂ D(0, r). For z ∈ D(0, r ′) one has that

f (z) =
1

2πi

∮
|ζ |=r′

f (ζ )
ζ − z

dζ

=
1

2πi

∮
|ζ |=r′

f (ζ )
ζ

1
1 − z/ζ

dζ

=
1

2πi

∮
|ζ |=r′

f (ζ )
ζ

∞∑
k=0

(z/ζ )k dζ.

The sum converges absolutely and uniformly on D(0, r ′), as |z/ζ | < 1. As a consequence, the order of
integration and summation can be interchanged, so that

f (z) =
1

2πi

∞∑
k=0

∮
|ζ |=r′

f (ζ )
ζ

(z/ζ )k dζ

=
1

2πi

∞∑
k=0

zk
∮
|ζ |=r′

f (ζ )
ζ k+1 dζ

=

∞∑
k=0

zk
f (k)(0)
k!

. �

Example. Consider f (z) = 1/(z − 3i). The power series expansion about z = 0 is given by

f (z) =
i
3

∞∑
n=0

( z
3i

)n
, z ∈ D(0,3).

The expansion about z = −i is given by

f (z) =
i
4

∞∑
n=0

(
z + i
4i

)n
, z ∈ D(−i,4).

3.4. The Cauchy estimates and Liouville’s theorem

Remark 3.19. In all that follows, unless explicitly stated otherwise, it will be assumed that U ⊂ C is open,
and that f : U 7→ C is holomorphic.

Theorem 3.20 (Cauchy estimates). Suppose that D(P, r) ⊂ U for a given P ∈ U . Set

M B sup
z∈D(P,r)

|f (z)|.

Then for each k ∈ N one has

|f (k)(P)| ≤
Mk!
rk

.
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Proof: Since f is continuous, the bound M < ∞ exists. Now

|f (k)(P)| =

∣∣∣∣∣∣ k!
2πi

∮
|ζ−P |=r

f (ζ )
(ζ − P)k+1 dζ

∣∣∣∣∣∣
≤
k!
2π
· 2πr ·

M

rk+1

=
Mk!
rk

. �

Remark 3.21. The fact that f is holomorphic is crucial in this estimate.

Proposition 3.22. If f ′(z) = 0 on U , then f is constant on U .

Proof: Since f is holomorphic,
f ′ = fx = −ify.

Hence, fx = fy = 0, so that f is constant. �

Definition 3.23. A holomorphic function is entire if it is holomorphic on all of C.

Example. One has that

ez B
∞∑
n=0

zn

n!
, cos z B

∞∑
n=0

(−1)n
z2n

(2n)!
, sin z B

∞∑
n=0

(−1)n
z2n+1

(2n + 1)!

are entire (use the ratio test). However, 1/(z − 1) is not, as it has a singularity at z = 1.

Theorem 3.24 (Liouville’s theorem). A bounded entire function is constant.

Proof: Let P ∈ C be given. By the Cauchy estimates one has

|f (k)(P)| ≤
Mk!
rk

, r > 0.

Since r > 0 is arbitrary, and the bound M is uniform, this implies that f (k)(P) = 0 for each k ∈ N. The power
series for f then contains only f (P). Since this series converges for all z ∈ C, f is constant. �

Corollary 3.25. If f is entire, and if for some fixed j > 0

|f (z)| ≤ C|z|j, |z| > 1,

then f is a polynomial in z of degree at most j.

Proof: Let r > 1 be given. By the above argument, for k > j one has that f (k)(0) = 0. Hence, the power
series centered at z = 0 terminates at n = j. �

Theorem 3.26 (Fundamental Theorem of Algebra). Let p(z) be a nonconstant holomorphic polynomial.
There is an α ∈ C such that p(α) = 0.

Proof: Suppose not, so that g(z) B 1/p(z) is entire. By the above corollary, one further has that |g(z)| → 0
as |z| → ∞; hence, g is bounded. Thus, g is a constant, which is a contradiction. �

Corollary 3.27. Let p(z) be a nonconstant holomorphic polynomial of degree k. There are numbers
α1, . . . , αk (not necessarily distinct) and a nonzero C ∈ C such that

p(z) = C(z − α1) · · · (z − αk).
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Proof: As a consequence of the Fundamental Theorem of Algebra, upon using the Euclidean algorithm one
has

p(z) = (z − α1)p1(z),

where p1(z) is a holomorphic polynomial of degree k − 1. If k ≥ 2, then one has that

p1(z) = (z − α2)p2(z),

where p2(z) is a holomorphic polynomial of degree k − 2. Hence,

p(z) = (z − α1)(z − α2)p2(z).

Proceeding until pk(z), a constant, yields the result. �

3.5. Uniform limits of holomorphic functions

Set

fj(z) B
j∑

n=0

anz
n.

When considering the sequence of holomorphic functions {fj(z)}, it was seen that if the sequence converges
uniformly on D(P, r), then the limit function f (z) is also holomorphic. Furthermore, f (k)

j → f (k) for each
k ≥ 1. This result can be generalized:
Theorem 3.28. Let fj : U 7→ C be a sequence of holomorphic functions. Suppose that there is a function
f : U 7→ C such that on each compact set E ⊂ U, fj → f uniformly. Then f is holomorphic on U .
Remark 3.29. Note, however, that this is not true in general. Consider g(x) = |x | for |x | ≤ 1. By the
Weierstrass approximation theorem there is a sequence of polynomials which converges uniformly to g(x).
Hence, while the limit is continuous, it is not even differentiable.

Proof: Let P ∈ U be given, and let r > 0 be such that D(P, r) ⊂ U . Since {fj} is a continuous family on D(P, r)
which converges uniformly, f is also continuous. Thus, upon using the fact that each fj is holomorphic, for
any z ∈ D(P, r),

f (z) = lim
j→∞

fj(z)

= lim
j→∞

1
2πi

∮
|ζ−P |=r

fj(ζ )
ζ − z

dζ

=
1

2πi

∮
|ζ−P |=r

lim
j→∞

fj(ζ )
ζ − z

dζ

=
1

2πi

∮
|ζ−P |=r

f (ζ )
ζ − z

dζ.

The interchange of the limit and integral is justified by the fact that for fixed z

fj(ζ )
ζ − z

→
f (ζ )
ζ − z

uniformly in ζ on |ζ − P | = r. Thus, f is holomorphic on D(P, r), which implies that f is holomorphic on
U . �

Corollary 3.30. For each k ≥ 1 one has that f (k)
j → f (k) uniformly on compact sets.

Proof: For each k ≥ 1 one has

f (k)
j (z) =

k!
2πi

∮
|ζ−P |=r

fj(ζ )
(ζ − z)k+1 dζ.
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Using the same argument as above yields that

lim
j→∞

f (k)
j (z) =

k!
2πi

∮
|ζ−P |=r

lim
j→∞

fj(ζ )
(ζ − z)k+1 dζ

=
k!
2πi

∮
|ζ−P |=r

f (ζ )
(ζ − z)k+1 dζ

= f (k)(z). �

3.6. The zeros of holomorphic functions

Definition 3.31. A point z0 ∈ Z is an accumulation point if there is a sequence {zj} ∈ Z\{z0} such that
limj→∞ zj = z0.

Theorem 3.32. Let f : U 7→ C be a holomorphic function, where U ⊂ C is open and connected. Let
Z B {z ∈ U : f (z) = 0}. If Z has an accumulation point in U , then f (z) = 0 for all z ∈ U .

Remark 3.33. Consider f (z) = sin(1/(1 − z)), which is holomorphic on D(0,1). One has Z = {1 − 1/nπ :
n = 1,2, . . . }. The accumulation point is z = 1 ∈ ∂D(0,1); hence, there is no contradiction.

Proof: Let z0 ∈ U be an accumulation point in Z. The first claim is that f (k)(z0) = 0 for each k ≥ 0. Suppose
not, and let N be the least integer such that f (N)(z0) , 0. There is an r0 > 0 such that

f (z) =

∞∑
n=N

f (n)(z0)
n!

(z − z0)n , z ∈ D(z0, r0).

Upon setting

g(z) B
∞∑
n=N

f (n)(z0)
n!

(z − z0)n−N , z ∈ D(z0, r0),

one has that g is holomorphic with g(z0) , 0. But, since g(z) = f (z)/(z − z0)N , there is a sequence {zj} ∈ Z
such that g(zj) = 0. By continuity this implies that g(z0) = 0, which is a contradiction.

Thus, f (z) = 0 for all z ∈ D(z0, r0), which implies that D(z0, r) ⊂ Z. Pick another point z1 , z0 ∈ D(z0, r0).
Applying the same argument yields that there is an r1 > 0 such that f (z) = 0 for all z ∈ D(z1, r1). Repeating
the procedure and using the fact that U is connected yields the result. �

Corollary 3.34. If f, g are holomorphic, and if {z ∈ U : f (z) = g(z)} has an accumulation point in U , then
f (z) = g(z) for all z ∈ U .

Proof: Consider h(z) B f (z) − g(z), and apply the above result. �

Corollary 3.35. If there is a P ∈ U such that f (k)(P) = 0 for all k ≥ 0, then f (z) = 0 for all z ∈ U .

Proof: There is an r > 0 such that on D(P, r) ⊂ U one has

f (z) =

∞∑
n=0

f (n)(P)
n!

(z − P)n = 0.

Now apply the above result. �

Example. One has:

(a) Recall the power series expansions for sin z and cos z. Furthermore, recall that both of these
functions are entire. One has that for x ∈ R, sin2 x + cos2 x = 1. Set f (z) B sin2 z + cos2 z − 1. We
have that R ⊂ Z; hence, by the above theorem f (z) = 0 for all z ∈ C.
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(b) Recall Euler’s formula for x ∈ R:
eix = cos x + i sin x,

from which one gets cos x = (eix + e−ix )/2. Applying a similar argument as in the previous example,
one has that the identity holds for all z ∈ C.

(c) The above idea can also be used to derive the trigonometric identities.

4. Meromorphic Functions and Residues

4.1. The behavior of a holomorphic function near an isolated singularity

Definition 4.1. Suppose that f : U\{P} 7→ C is holomorphic. Then f has an isolated singularity at P.
There are three possibilities for f near an isolated singularity:

(a) there is an r > 0 and M > 0 such that |f (z)| ≤ M for all z ∈ D(P, r)\{P}

(b) limz→P |f (z)| = +∞

(c) neither (a) nor (b) applies.

Definition 4.2. In case (a) f is said to have a removable singularity at P, in case (b) f is said to have a pole
at P, and in case (c) f is said to have an essential singularity at P.
Theorem 4.3. Suppose that f : D(P, r)\{P} 7→ C is holomorphic and bounded. Then

(a) limz→P f (z) exists

(b) the function f̂ : D(P, r) 7→ C defined by

f̂ (z) B

f (z), z , P

lim
ζ→P

f (ζ ), z = P

is holomorphic.

Remark 4.4. The assumption that f is holomorphic is crucial. For example, the uniformly bounded function
f (z) = sin(1/|z|) ∈ C∞(C\{0}) has no limit at z = 0.

Proof: Consider the function

g(z) =

(z − P)2f (z), z , P

0 z = P.

It is clear that g ∈ C1(D(P, r)\{P}) Note that if g ∈ C1(D(P, r)), then by the product rule

∂g

∂z̄
=
∂

∂z̄
(z − P)2f (z) + (z − P)2 ∂f

∂z̄
= 0

on D(P, r)\{P}, so by continuity the result holds for all z ∈ D(P, r). Hence, g is holomorphic on D(P, r).
Now let us show that f̂ exists. Since there is an M > 0 such that |f (z)| ≤ M for all z ∈ D(P, r)\{P}, one has

that |g(z)| ≤ M |z − P |2 on D(P, r). Since g is holomorphic, this then implies that the power series expansion
has the form

g(z) =

∞∑
j=2

aj(z − P)j, |z| < r.

Setting H(z) B g(z)/(z − P)2 yields a holomorphic function which satisfies H(z) = f (z) for z , P. Since
limz→P H(z) = a2, the function H is desired holomorphic extension f̂ .
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Now it must be shown that g ∈ C1 at z = P. First note that for h ∈ R,

lim
h→0

g(P + h) − g(P)
h

= lim
h→0

hf (P + h) = 0

(the second equality follows from the fact that f is bounded). Thus, gx (P) = 0. Similarly, gy(P) = 0.
In order that g ∈ C1, it must then be shown that limz→P gx (P) = limz→P gy(P) = 0. Let z0 ∈ D(P, r/2)\{P}.

The Cauchy estimate applied on D(z0, |z0 − P |) ⊂ D(P, r) yields that

|f ′(z0)| ≤
M

|z0 − P |
,

and since f is holomorphic at z0,

|fx (z0)| ≤
M

|z0 − P |
.

Thus, since g is holomorphic at z0 one has that

|gx (z0)| = |2(z0 − P)f (z0) + (z0 − P)2fx (z0)|

≤ 2M |z0 − P | + |z0 − P |
2 M

|z0 − P |
,

so that gx (z0)→ 0 as z0 → P. A similar result holds for gy, which proves the theorem. �

Example. Let us show that the entire function ez has the range C\{0}. Let α = αr + iαi ∈ C\{0} be given.
Since for w = wr + iwi one has that ew = ewr (coswi + i sinwi), solving ew = α is equivalent to solving

ewr coswi = αr, ewr sinwi = αi.

In other words,
wr =

1
2

ln(α2
r + α2

i ), tan(wi) =
αi

αr
.

Now consider case (c) with the example

e1/z =

∞∑
n=0

1
n!zn

,

which is clearly holomorphic on D(0,1)\{0}. Let α = αr + iαi ∈ C\{0} be given, and choose w ∈ C\{0} so that
ew = α. Now, ew+i2kπ = α for any k ∈ Z. Let K > 0 be sufficiently large so that w + i2kπ , 0 for k ≥ K. Upon
setting zk B 1/(w + i2kπ) for k ≥ K, one has that e1/zk = α with zk → 0 as k → +∞. Hence, for any ϸ > 0
there is a z with 0 < |z| < ϸ such that e1/z = α, i.e., the range of e1/z : D(0, ϸ)\{0} 7→ C is dense in C. In
particular, it is not bounded.
Theorem 4.5 (Casorati-Weierstrass). If f : D(P, r0)\{P} 7→ C is holomorphic and if P is an essential singu-
larity of f , then f (D(P, r)\{P}) is dense in C for any 0 < r < r0.

Proof: Suppose that the statement fails. There is then a λ ∈ C and an ϸ > 0 such that |f (z) − λ| ≥ ϸ for all
z ∈ D(P, r0)\{P}. Since f (z) − λ is nonvanishing on D(P, r0)\{P}, the function

g(z) B
1

f (z) − λ

is holomorphic on D(P, r0)\{P}. Furthermore, |g(z)| ≤ 1/ϸ for all z ∈ D(P, r0)\{P}. Thus, by Theorem 4.3 g has
a holomorphic extension ĝ, and

f (z) = λ +
1
ĝ(z)

.

If ĝ(P) , 0, then f is holomorphic on D(P, r0), i.e., case (a) applies. If ĝ(P) = 0, then case (b) applies. Thus,
f does not have an essential singularity at P, which is a contradiction. �

Example. Which of the functions, if any, have essential singularities at z = 0:

sin(1/z),
∑∞
n=0 nz

n

z4 .
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4.2. Expansion around singular points

Definition 4.6. A Laurent series is of the form
+∞∑
n=−∞

an(z − P)n.

The series converges if both
−1∑

n=−∞

an(z − P)n ,
+∞∑
n=0

an(z − P)n

converge in the usual sense.
Lemma 4.7. Suppose that the Laurent series converges at z1, z2 , P, and suppose that |z1 − P | < |z2 − P |.
The series then converges on the annulus D(P, |z2 − P |)\D(P, |z1 − P |).

Proof: By Abel’s lemma the series
∑+∞
n=0 an(z − P)n converges for |z − P | < max{|z1 − P |, |z2 − P |} = |z2 − P |.

Setting w = (z − P)−1 and again using Abel’s lemma yields that the series
∑+∞
n=0 a−nw

n converges for |w| <
max{1/|z1 − P |,1/|z2 − P |} = 1/|z1 − P |, i.e., |z − P | > |z1 − P |. �

Remark 4.8. Unless stated otherwise, henceforth an annulus with r1 < r2 will be represented by

A B D(P, r2)\D(P, r1).

Lemma 4.9. Suppose that the Laurent series converges at minimally one point. There are then unique
r1 ≤ r2 such that the series converges on the annulus A. Furthermore, the convergence is uniform in
int(A).
Remark 4.10. If r1 < r2, then the Laurent series is holomorphic on the annulus.
Example. One has:

(a) The Laurent series

e1/z =

0∑
n=−∞

zn

|n|!

converges on C\{0}. Recall that z = 0 is an essential singularity.

(b) The Laurent series
+∞∑
n=−∞

zn

n4

converges only on the circle |z| = 1. The convergence is absolute.

Assuming that r1 < r2, set

f (z) B
+∞∑
n=−∞

an(z − P)n.

Since the convergence is uniform in A, for any r1 < r < r2 one has that∮
|ζ−P |=r

f (ζ )
(ζ − P)j+1 dζ =

∮
|ζ−P |=r

+∞∑
n=−∞

an(ζ − P)n−j−1 dζ

=

+∞∑
n=−∞

∮
|ζ−P |=r

an(ζ − P)n−j−1 dζ.

An explicit calculation yields that ∮
|ζ−P |=r

(ζ − P)n−j−1 dζ =

0, n , j

2πi, n = j.

Hence, one has that

aj =
1

2πi

∮
|ζ−P |=r

f (ζ )
(ζ − P)j+1 dζ,

so that the coefficients of the Laurent series are uniquely determined by f .
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4.3. Existence of Laurent expansions

We know that a Laurent expansion on A defines a holomorphic function f . It must now be shown that
a function holomorphic on A can be represented by a Laurent series. It is important to keep in mind that if
one considers a circle contained in A, then the holomorphic function can be represented by a Taylor series,
i.e., there are no powers of z−j in the expansion. This is due to the fact that the circle is a simply connected
domain. An annulus is not simply connected, and hence there are as of yet no theorems giving the existence
of a series representation for a holomorphic function which is valid on the entire annulus.
Theorem 4.11 (Cauchy integral formula for an annulus). Suppose that there exist 0 ≤ r1 < r2 ≤ +∞ such
that f : A 7→ C is holomorphic. Then for each r1 < s1 < s2 < r2 and each z ∈ D(P, s2)\D(P, s1) it holds that

f (z) =
1

2πi

∮
|ζ−P |=s2

f (ζ )
ζ − z

dζ −
1

2πi

∮
|ζ−P |=s1

f (ζ )
ζ − z

dζ.

Proof: Fix z ∈ D(P, s2)\D(P, s1), and for each ζ ∈ A set

g(ζ ) B


f (ζ ) − f (z)
ζ − z

, ζ , z

f ′(z), ζ = z.

By the Riemann removable singularities theorem Theorem 4.3 g is holomorphic on A. Thus, one has that∮
|ζ−P |=s2

g(ζ ) dζ =

∮
|ζ−P |=s1

g(ζ ) dζ,

which upon using the definition of g and the fact that neither curve contains the point z yields that∮
|ζ−P |=s2

f (ζ )
ζ − z

dζ −
∮
|ζ−P |=s2

f (z)
ζ − z

dζ =

∮
|ζ−P |=s1

f (ζ )
ζ − z

dζ −
∮
|ζ−P |=s1

f (z)
ζ − z

dζ.

Upon rearranging, and using the Cauchy integral formula to get that∮
|ζ−P |=s2

f (z)
ζ − z

dζ = 2πif (z),
∮
|ζ−P |=s1

f (z)
ζ − z

dζ = 0,

one gets the desired result. �

Theorem 4.12. If 0 ≤ r1 < r2, and if f : A 7→ C is holomorphic, then f has a Laurent series which converges
on A to f , and which converges absolutely and uniformly on D(P, s2)\D(P, s1) for any r1 < s1 < s2 < r2.

Proof: Fix z ∈ D(P, s2)\D(P, s1). Since z ∈ D(P, s2), the geometric series

ζ − P

ζ − z
=

1
1 − z−P

ζ−P

=

+∞∑
n=0

(z − P)n

(ζ − P)n

converges uniformly, so that∮
|ζ−P |=s2

f (ζ )
ζ − z

dζ =

+∞∑
n=0

(∮
|ζ−P |=s2

f (ζ )
(ζ − P)n+1 dζ

)
(z − P)n

= 2πi
+∞∑
n=0

an(z − P)n.

A similar argument yields that for |z − P | < s1 the geometric series

z − P

ζ − z
= −

1

1 − ζ−P
z−P

= −

+∞∑
n=0

(ζ − P)n

(z − P)n
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converges uniformly, so that∮
|ζ−P |=s1

f (ζ )
ζ − z

dζ = −

+∞∑
n=0

(∮
|ζ−P |=s1

f (ζ )
(ζ − P)−n

dζ
)

(z − P)−(n+1)

= −

−1∑
n=−∞

(∮
|ζ−P |=s1

f (ζ )
(ζ − P)n+1 dζ

)
(z − P)n

= −2πi
−1∑

n=−∞

an(z − P)n.

Thus, the Cauchy integral formula yields that f has the desired Laurent series. �

Corollary 4.13. If f : D(P, r)\{P} is holomorphic, then f has a unique Laurent series given by

f (z) =

+∞∑
n=−∞

an(z − P)n ,

where
an =

1
2πi

∮
|ζ−P |=s

f (ζ )
(ζ − P)n+1 dζ

for any 0 < s < r. The sum converges uniformly on compact subsets of D(P, r)\{P}, and absolutely for all
z ∈ D(P, r)\{P}.

We can now use the Laurent series to classify the singularity at the point P:

(a) Removable singularity if and only if an = 0 for all n ≤ −1

(b) Pole of order k if an = 0 for n < −k with a−k , 0, i.e., |f (z)| ≥ C|z − P |−k for some nonzero C and
|z − P | sufficiently small. To see this, note that

f (z) = (z − P)−k
a−k +

+∞∑
n=−k+1

an(z − P)n+k

 ,
and that the sum defines a holomorphic function on D(P, r).

(c) Essential singularity otherwise.

4.4. Examples of Laurent expansions

Definition 4.14. If f has a pole of order k at P, the principal part of f at P is given by

−1∑
n=−k

an(z − P)n.

How does one compute the coefficients directly without using the contour integration? It is clear that
the order of the pole can be determined by finding the unique integer k such that

lim
z→P

(z − P)kf (z) , 0, lim
z→P
|(z − P)jf (z)| = +∞, j < k.

Supposing that f has a pole of order k at z = P, one quickly sees that

a−k = lim
z→P

(z − P)kf (z).

Expanding upon this idea yields the following:
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Lemma 4.15. Let f : D(P, r)\{P} be holomorphic, and assume that f has a pole of order k at z = P. Then
for n ≥ −k,

an =
1

(k + n)!
dk+n

dzk+n
((z − P)kf (z))

∣∣∣∣∣∣
z=P

.

Example. Consider f (z) B ez/ sin z on the strip U B {z : | Im z| < π}. Since

sin z =
eiz − e−iz

2i
,

one has that sin z = 0 if and only if eix = ±ey, i.e.,

cos x = ±ey, sin x = 0.

This implies that y = 0 and x = nπ. Thus, on U, f has a singularity only at z = 0. Using the Taylor
expansions for each function yields that

lim
z→0

zf (z) = lim
z→0

z
1 + z + · · ·

z − z3/3! + · · ·

= 1,

so that

f (z) =
1
z

+

+∞∑
n=0

anz
n.

This sum converges on D(0, π)\{0}.

4.5. The calculus of residues

Definition 4.16. A set U ⊂ C is simply connected if every closed curve is continuously deformable to a
point.
Example. D(0,1) is simply connected, whereas D(0,1)\{0} is not.
Definition 4.17. Let γ : [a, b] 7→ C be a piecewise C1 closed curve. Suppose that P < γ([a, b]). The index
of γ with respect to P, written Indγ(P), is given by

Indγ(P) B
1

2πi

∮
γ

1
ζ − P

dζ.

The index of γ is also known as the winding number of the curve γ about the point P.
Remark 4.18. It is important to note that the definition does not require that γ be a simple closed curve.
Lemma 4.19. Indγ(P) is an integer.

Proof: Set

I(t) B
∫ t

a

γ′(s)
γ(s) − P

ds,

and set
g(t) B (γ(t) − P)e−I(t).

Note that γ ∈ C1([a, b]) implies that g ∈ C1([a, b]). A routine calculation shows that g′(t) = 0 for all t ∈ [a, b];
hence, g is a constant. Now, g(a) = γ(a) − P, and using the fact that γ is a closed curve yields that

g(b) = (γ(b) − P)e−I(b)

= (γ(a) − P)e−I(b).

Since g(a) = g(b), this then implies that I(b) = 2kπi for some k ∈ Z. �

Remark 4.20. One has:
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(a) If P < int(γ), then Indγ(P) = 0.

(b) If γ is a circle which runs around P k times in a counterclockwise direction, then Indγ(P) = k, while
if the direction is clockwise then Indγ(P) = −k. This result generalizes to arbitrary C1 closed curves.

Definition 4.21. Let f be a holomorphic function with a pole of order k at P. The residue of f at P is given
by

Resf (P) B
1

(k − 1)!
dk−1

dzk−1 ((z − P)kf (z))

∣∣∣∣∣∣
z=P

.

Remark 4.22. As a consequence of Lemma 4.15, note that a−1 = Resf (P).
Theorem 4.23 (Residue theorem). Suppose that U ⊂ C is a simply connected set, and that P1, . . . , Pn ∈ U
are distinct points. Suppose that f : U\{P1, . . . , Pn} 7→ C is holomorphic and γ ⊂ U\{P1, . . . , Pn} is a closed
piecewise C1 curve. Then ∮

γ
f (z) dz = 2πi

n∑
i=1

Indγ(Pi) Resf (Pi).

Proof: For each j = 1, . . . , n expand f in a Laurent series about Pj. Denote the principle part at Pj by

sj(z) B
−1∑

k=−∞

a jk(z − Pj)k ,

and set S(z) B
∑n
j=1 sj(z). Since each Pj is an isolated singularity, each sj(z) is holomorphic on C\{Pj}, so

that S(z) is holomorphic on C\{P1, . . . , Pn}. Now, the function g(z) B f (z)− S(z) has a removable singularity
at each point Pj as f (z) − sj(z) has a Laurent expansion at Pj with no negative powers, and each sk(z) for
k , j is holomorphic at Pj. Since U is simply connected, this then implies that∮

γ
g(z) dz = 0,

i.e., ∮
γ
f (z) dz =

∮
γ
S(z) dz =

n∑
j=1

∮
γ
sj(z) dz.

Now, γ([a, b]) is a compact set and Pj < γ([a, b]); hence, sj(z) converges uniformly on γ. Thus, one can
interchange the summation and integration to get∮

γ
sj(z) dz =

−1∑
k=−∞

a jk

∮
γ
(z − Pj)k dz

= a j
−1

∮
γ
(z − Pj)−1 dz

= 2πi Indγ(Pj) Resf (Pj).

The second equality follows from the fact that (z − Pj)−k has a holomorphic antiderivative for k ≥ 2. The
result now follows. �

4.6. Applications of the calculus of residues

Before we look at some explicit problems, we need the following preliminary results. The first allows one
to easily compute path integrals along large circular arcs, and the second one allows us to easily compute
residues in the case of simple poles.
Lemma 4.24. Let CR be a circular arc of radius R centered at z = 0. If zf (z)→ 0 uniformly as R → ∞, then

lim
R→∞

∮
CR

f (z) dz = 0.
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Proof: Let θ > 0 be the angle enclosed by CR. Then∣∣∣∣∣∣
∮
CR

f (z) dz

∣∣∣∣∣∣ ≤
∫ θ

0
|f (z)|R dφ ≤ R sup

z∈CR
|f (z)|θ.

Since zf (z)→ 0 uniformly as R → ∞, the result now follows. �

Lemma 4.25. Consider h(z) = f (z)/g(z), and suppose that g(z) has simple zeros at P1, . . . , Pn with f (Pj) , 0
for j = 1, . . . , n. Then

Resh(Pj) =
f (Pj)
g′(Pj)

.

Proof: Since g(z) has a simple zero at Pj, it has the Taylor expansion

g(z) = g′(Pj)(z − Pj) +

+∞∑
k=2

g(k)(Pj)
k!

(z − Pj)k.

Since
Resh(Pj) = lim

z→Pj
(z − Pj)h(z),

the result immediately follows. �

Example. Let us evaluate ∫ +∞

−∞

1
64 + x6 dx. (4.1)

Re z

Im z

γ1
R

γ2
R

P0

P1

P2

Figure 1: The contour of integration associated with equation (4.1).

This will be done by looking at ∮
γR

1
64 + z6 dz,

where for R > 2 one defines γR B γ1
R ∪ γ

2
R, where

γ1
R(t) B t + i0, −R ≤ t ≤ R

γ2
R(t) B Reit , 0 ≤ t ≤ π

(see Figure 1). Set U B C, and set Pj B 2ei(1+2j)π/6 for j = 0, . . . ,5. Then f (z) B 1/(64 + z6) is holomorphic
on U\{P0, . . . , P5}, and the residue theorem applies. By the choice of γR one then has that∮

γR

f (z) dz = 2πi
2∑
j=0

IndγR (Pj) Resf (Pj).
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Since each pole is simple, upon applying Lemma 4.25 one sees that

Resf (P0) =
1

384
(−
√

3 − i), Resf (P1) = −
1

192
i, Resf (P2) =

1
384

(
√

3 − i);

furthermore, the choice of γR yields IndγR (Pj) = 1 for j = 0, . . . ,2. Thus,∮
γR

f (z) dz =
π

48
.

Now, ∮
γR

f (z) dz =

∮
γ1
R

f (z) dz +

∮
γ2
R

f (z) dz.

It is easy to see that

lim
R→+∞

∮
γ1
R

f (z) dz = lim
R→+∞

∫ +R

−R
f (t) dt =

∫ +∞

−∞

1
64 + t6

dt.

Furthermore, by Lemma 4.24 one has that

lim
R→+∞

∣∣∣∣∣∣
∮
γ2
R

f (z) dz

∣∣∣∣∣∣ = 0.

Hence, one finally has that ∫ +∞

−∞

1
64 + x6 dx =

π

48
.

Example. Consider ∫ +∞

−∞

sech2(x) cos(bx) dx. (4.2)

Re z

Im z

γ1
R

γ2
R

γ3
R

γ4
R P0

Figure 2: The contour of integration associated with equation (4.2).

This will be done by looking at ∮
γR

sech2(z)eibz dz

for a suitably chosen contour γR. The poles of sech(z) are located at z = i(2k + 1)π/2, k ∈ Z. Hence, a
contour as in the previous example will not work. For R > 1 set γR B ∪4

j=1γ
j
R, where

γ1
R(t) B t + i0, −R ≤ t ≤ R

γ2
R(t) B R + it, 0 ≤ t ≤ π

γ3
R(t) B t + iπ, R ≤ t ≤ −R

γ4
R(t) B −R + it, π ≤ t ≤ 0
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(see Figure 2). A routine calculation shows that sech(z + iπ) = − sech(z), and that eib(z+iπ) = e−bπeibz. After a
bit of algebra this yields that∮

γ1
R

sech2(z)eibz dz +

∮
γ3
R

sech2(z)eibz dz = e−πb/2(eπb/2 − e−πb/2)
∫ +R

−R
sech2(t)eibt dt.

When considering γ2
R note that for z = R + it,

sech(z) = 2e−R
( 1
eit + e−2R−it

)
.

Using a similar argument as in the proof of Lemma 4.24 then yields that∣∣∣∣∣∣
∮
γ2
R

sech2(z)eibz dz

∣∣∣∣∣∣ ≤ Ce−2R

for some positive constant C. A similar estimate holds when considering γ4
R. The pole at z = iπ/2 is of order

two. Recalling the calculation presented in Definition 4.21, one sees via a routine Maple calculation that
Resf (iπ/2) = −ibe−πb/2, so by the residue theorem∮

γR

sech2(z)eibz dz = 2πbe−πb/2.

Thus, upon letting R → +∞ one has ∫ +∞

−∞

sech2(t)eibt dt =
πb

sinh(πb/2)
.

Taking the real and imaginary parts then gives∫ +∞

−∞

sech2(t) cos(bt) dt =
πb

sinh(πb/2)

and ∫ +∞

−∞

sech2(t) sin(bt) dt = 0.

Example. Let us evaluate

f (x) B
+∞∑
n=−∞

sech2(n + x).

Note that

f (x + 1) =

+∞∑
n=−∞

sech2((n + 1) + x) = f (x),

so that f (x) can be written as a Fourier series. Since

f (−x) =

+∞∑
n=−∞

sech2(n − x) =

−∞∑
n=+∞

sech2(−n − x) =

−∞∑
n=+∞

sech2(n + x) = f (x),

one has that

f (x) =

+∞∑
n=0

f̂n cos(2πnx),

where

f̂0 =

∫ +∞

−∞

sech2(x) dx = 2

and

f̂n = 2
∫ +∞

−∞

sech2(x) cos(2πnx) dx.
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From the previous example one immediately gets that

f̂n =
4π2n

sinh(π2n)
;

hence,

f (x) = 2 +

+∞∑
n=1

4π2n

sinh(π2n)
cos(2πnx).

A quick numerical calculation yields that∣∣∣∣∣∣f (x) − 2 −
4π2

sinh(π2)
cos(2πx)

∣∣∣∣∣∣ = O(10−7),

so that

f (x) ∼ 2 +
4π2

sinh(π2)
cos(2πx).

4.7. Meromorphic functions and singularities at infinity

Definition 4.26. A meromorphic function f : U\S 7→ C satisfies

(a) S ⊂ U is closed and discrete (no accumulation points in U )

(b) f is holomorphic on U\S

(c) each P ∈ S is a pole of finite order.

Lemma 4.27. Let f : U 7→ C be holomorphic, and let U ⊂ C be open and connected. Assuming that
f (z) . 0, set S B {z ∈ U : f (z) = 0}. Setting F (z) B 1/f (z), one has that F : U\S 7→ C is meromorphic.

Proof: The set S ⊂ U is discrete; otherwise, f (z) ≡ 0 on U . Each zero of f is of finite order; otherwise,
f (z) ≡ 0 on U . Hence, each point P ∈ S is a pole of finite order for F . �

Definition 4.28. Suppose that f is meromorphic on U , and that {z : |z| > R} ⊂ U for some R > 0. Set

U∞ B {z : 0 < |z| < 1/R},

and define G : U∞ 7→ C by G(z) B f (1/z). Then

(a) f has a removable singularity at ∞ if G has a removable singularity at 0

(b) f has a pole at ∞ if G has a pole at 0

(c) f has an essential singularity at ∞ if G has an essential singularity at 0.

Example. ez, sin z, cos z all have essential singularities at ∞.
Assuming that

f (z) =

+∞∑
n=−∞

anz
n

converges for |z| > R, one has that on U∞ the function G(z) has the Laurent expansion

G(z) =

+∞∑
n=−∞

a−nz
n.

One then immediately sees that for the behavior of G(z) near zero,

(a) removable singularity: a−n = 0 for n ≤ −1
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(b) pole of order N : a−n = 0 for n ≤ −(N + 1)

(c) essential singularity: otherwise.

Hence, for the function f one gets the following lemma.

Lemma 4.29. Suppose that f : C 7→ C is an entire function. Then f has a pole at infinity if and only if it is
a nonconstant polynomial.

Proof: The idea is similar to that presented in Problem 4.18. The detailed proof is left to the student. �

Definition 4.30. f is meromorphic at ∞ if G is meromorphic on U∞.

Remark 4.31. Note that this definition implies that f has a pole at ∞.

Lemma 4.32. If f is meromorphic on C and is also meromorphic at ∞, then f is a rational function.
Conversely, every rational function is meromorphic on C and at ∞.

Proof: Suppose that f (z) = P(z)/Q(z), where both P and Q are polynomials, i.e.,

P(z) B anz
z + · · · + a0, Q(z) B bmz

m + · · · + b0.

It is clear that f is meromorphic on C. Set

G(z) = f (1/z) =
anz−n + · · · + a0

bmz−m + · · · + b0
=
anzm−n + · · · + a0zm

bm + · · · + b0zm
.

If m ≥ n, then G has a removable singularity at zero, and if m < n then G has a pole at zero of order n −m.
In either case, G is meromorphic on U∞, and hence f is meromorphic at ∞.

Now suppose that f is meromorphic on C and at ∞. If f has a pole at ∞, then by definition there is an
R > 0 such that no poles exist in the set {z ∈ C : |z| > R}. Furthermore, since the set of poles forms a
discrete set, there can be only a finite number of poles in D(0, R). If there is an α ∈ C such that f (∞) = α,
then there is an R > 0 such that |f (z) − α| < 1 in the set {z ∈ C : |z| > R}. Again, there can be only a finite
number of poles in D(0, R). Finally, f cannot have an essential singularity at ∞ since then f (1/z) would
have an essential singularity at z = 0, and hence would not be meromorphic on U∞.

Let P1, . . . , Pk ∈ D(0, R) be the poles. There are then integers n1, . . . , nk such that

F (z) B (z − P1)n1 · · · (z − Pk)nk f (z)

is holomorphic. Clearly, F is rational if and only if f is rational. If F has a removable singularity at ∞, then
F is bounded, and the proof is complete. If F has a pole at ∞, then F is a polynomial, and the proof is
complete. �

4.8. Multiple-valued functions

Much of the material in this section can be found in [11] and [13, Chapter 4]. Here we will consider
entire functions which are not one-to-one, so that the inverse function is multiple-valued. We will need the
following result:

Lemma 4.33. Suppose that f (z) : G 7→ C is one-to-one and holomorphic, and suppose that f −1(z) is
continuous on the range. If z0 ∈ G is such that f ′(z0) , 0, then f −1 is holomorphic at f (z0), and

d
dz
f −1(f (z0)) =

1
f ′(z0)

.
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4.8.1. The mapping w = z1/n

Write z = |z|eiθ. So that the function is one-to-one, the restriction must be made that θ ∈ [θ0 + 2kπ, θ0 +

2(k + 1)π) for some k ∈ Z, where θ0 ∈ R is arbitrary. One has that

w = z1/n = |z|1/n exp
(

i(θ0 + 2kπ)
n

)
,

where k ∈ N is arbitrary. Note that for k = ` one has that z1/n = α, where α B |z|1/nei(θ0+2`π)/n, while for
k = ` + 1 one has that z1/n = αei2π/n. Thus, w is not continuous on the ray arg(z) = θ0.

For each k = 0, . . . , n − 1 let

Gk B {z ∈ C : arg(z) ∈ [θ0 + 2kπ, θ0 + 2(k + 1)π)}.

Then w : Gk 7→ C is one-to-one for each k. The function w|Gk is a branch of the multi-valued function,
and the rays arg(z) = θ0 + 2kπ are branch cuts. It is clear that w|Gk is continuous. As a consequence of
Lemma 4.33 one then has that w|Gk is holomorphic on Gk\{0}, with

d
dz
w|Gk (z) =

1
nw|n−1

Gk
(z)
.

Definition 4.34. The point ζ ∈ C is a branch point of f (z) if there exists an r0 > 0 such that one complete
circuit around any Jordan curve γ ⊂ D(ζ, r0) with ζ ∈ int(γ) yields that each branch of f (z) is carried into
another branch. If a finite number of circuits, say n, carries every branch into itself, then ζ is a branch
point of order n − 1. In this case, if f (z) has a limit at ζ , then the branch point is an algebraic branch point.

Note that in the above discussion one has that n circuits around z = 0 carries Gk back to itself. It is
then clear that z = 0 is an algebraic branch point of order n − 1 for the function z1/n. Further note that
upon setting s = 1/z the function z1/n becomes s−1/n. This function has an algebraic branch point of order
n − 1 at s = 0. Hence, the point z = ∞ can also be regarded as an algebraic branch point of order n − 1 for
z1/n.
Remark 4.35. It is easy to see that the function (z−a)1/n has an algebraic branch point at z = a,∞ of order
n − 1. The function (z − a

z − b

)1/n

has algebraic branch points of order n − 1 at z = a, b. The point ∞ is no longer a branch point, as setting
s = 1/z yields (z − a

z − b

)1/n
7→

(1 − as
1 − bs

)1/n
,

which is holomorphic at s = 0.

4.8.2. The mapping w = P(z)1/n

Now consider
w = [(z − a1)α1 · · · (z − ak)αk ]1/n.

From the previous section it is clear that the only potential finite branch points are z = a1, . . . , ak. When
considering the function (z − aj)αj/n, suppose that αj = δjα′j and n = δjnj, where δj is the greatest common
divisor of αj and n. One then has that

(z − aj)αj/n = (z − aj)α
′
j /nj .

Assuming that α′j/nj < Z, from the above discussion it follows that aj is an algebraic branch point of order
nj − 1. If α′j/nj ∈ Z, the aj is either a regular point or pole. Since for z ∼ aj one has that

w = Aj(z)(z − aj)αj/n ,
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where Aj(z) is holomorphic, one then can classify each potential branch point. Letting s = 1/z yields

w = s−N/n[(1 − a1s)α1 · · · (1 − aks)αk ]1/n , N B α1 + · · · + αk.

If N/n < Z, and if δ∞ is the greatest common divisor of N and n with n = δ∞n∞, then ∞ is an algebraic
branch point of order n∞ − 1.
Example. Consider f (z) B [(z − a)(z − b)]1/2, where a < 0 < b ∈ R. From the above discussion z = a, b are
each algebraic branch points of order one. Furthermore, since N = n = 2, ∞ is not a branch point. Setting

z − a = r1eiθ1 , z − b = r2eiθ2

yields
f (z) =

√
r1r2ei(θ1+θ2)/2.

If one takes 0 ≤ θ1, θ2 < 2π, then the branch cut is [a, b]. If one takes 0 ≤ θ1 < 2π and −π ≤ θ2 < π, then
the branch cut is (−∞, a] ∪ [b,+∞). In this case f (0) = i

√
|ab|. Finally, the same branch cut occurs if one

takes −π ≤ θ1 < π and 0 ≤ θ2 < 2π, again with f (0) = i
√
|ab|. For a more complete discussion, see [1,

Section 2.3].

4.8.3. The logarithm

Recall that ez = ez+i2kπ for any k ∈ Z. Hence, the inverse can only be on

Gk B {z ∈ C : arg(z0) + 2kπ ≤ arg(z) < arg(z0) + 2(k + 1)π, k ∈ Z}.

On Gk the inverse is given by

ln z B ln |z| + i arg z, arg(z0) + 2kπ ≤ arg(z) < arg(z0) + 2(k + 1)π;

furthermore, one has that

d
dz

ln z =
1
z
, arg(z0) + 2kπ ≤ arg(z) < arg(z0) + 2(k + 1)π.

Note that z = 0 and z = ∞ are branch points; however, they are branch points of infinite order (logarithmic
branch points).

The function zα for α ∈ C can now be defined as

zα B eα ln z.

If α ∈ R is irrational, then z = 0 and z = ∞ are branch points of infinite order.
Example. Consider the following:

(a) 1
√

3 = e
√

3 ln 1 = e2
√

3kπi, k ∈ Z

(b) ii = ei ln i = ei(4k+1)πi/2 = e−(4k+1)π/2, k ∈ Z.

4.8.4. Computational examples

Lemma 4.36. Let Cϸ be a circular arc of radius ϸ centered at z0.

(a) If (z − z0)f (z)→ 0 uniformly as ϸ → 0, then

lim
ϸ→0

∮
Cϸ

f (z) dz = 0.
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(b) If f (z) has a simple pole at z0, then

lim
ϸ→0

∮
Cϸ

f (z) dz = iθResf (z0),

where the integration is carried out in the counterclockwise direction.

Remark 4.37. If the direction is carried out in a clockwise direction, then in part (b) one has that

lim
ϸ→0

∮
Cϸ

f (z) dz = −iθResf (z0),

Proof: For part (a), one has that |(z − z0)f (z)| ≤ δϸ, where δϸ → 0 as ϸ → 0. In other words, |f (z)| ≤ δϸ/ϸ on
Cϸ. One then has that ∣∣∣∣∣∣

∮
Cϸ

f (z) dz

∣∣∣∣∣∣ ≤
∫ θ

0
|f (z)|ϸ dφ = δϸθ,

from which follows the result.
Now consider part (b). Since f (z) has a simple pole at z0, f (z) has the Laurent expansion

f (z) =
a−1

z − z0
+ g(z),

where g(z) is holomorphic in a neighborhood of z0. By part (a),

lim
ϸ→0

∮
Cϸ

g(z) dz = 0.

Setting z = z0 + ϸeiφ then yields that∮
Cϸ

a−1

z − z0
dz = a−1

∫ θ

0
i dφ = iθa−1,

from which follows the result. �

Example. Consider ∫ +∞

−∞

cos x − cosa
x2 − a2 dx, a ∈ R. (4.3)

Note that the integrand is well-defined at x = ±a, and that the integral converges. This will be done by
computing ∮

γ

eiz − cosa
z2 − a2 dz,

where γ is composed of the pieces:

γ− B −R + t, 0 ≤ t ≤ R − a − ϸ

γ0 B −a + ϸ + t, 0 ≤ t ≤ 2a − 2ϸ
γ+ B a + ϸ + t, 0 ≤ t ≤ R − a − ϸ

γ±ϸ B z = ±a + ϸeiφ, 0 ≤ φ ≤ π

γR B Reiφ, 0 ≤ φ ≤ π

(see Figure 3).
As a consequence of Lemma 4.24 it is known that

lim
R→∞

∮
γR

eiz − cosa
z2 − a2 dz = 0.
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Re z

Im z

−a a

Figure 3: The contour of integration associated with equation (4.3).

Furthermore, by Lemma 4.36 one has that

lim
ϸ→0

∮
γ±ϸ

eiz − cosa
z2 − a2 dz = −iπ Resf (±a) = −iπ

(
±

e±ia

2a
∓

cosa
2a

)
(note that the direction is clockwise). One then gets that

0 = lim
ϸ→0,R→∞

∮
γ

eiz − cosa
z2 − a2 dz =

∫ +∞

−∞

eix − cosa
x2 − a2 dx +

π sina
a

,

from which one gets by taking the real part that∫ +∞

−∞

cos x − cosa
x2 − a2 dx = −

π sina
a

.

Example. Consider ∫ +∞

0

ln2 x

x2 + a2 dx, a ∈ R+. (4.4)

Note that the improper integral converges at both x = 0 and x = +∞. This will be evaluated by computing∮
γ

ln2 z

z2 + a2 dz,

where γ is composed of the pieces:

γ− B ϸ + t, 0 ≤ t ≤ R − ϸ
γ+ B −R + t, 0 ≤ t ≤ R − ϸ

γϸ B z = ϸeiφ, 0 ≤ φ ≤ π

γR B Reiφ, 0 ≤ φ ≤ π

(see Figure 4). In the above 0 < ϸ < a < R. Furthermore, ln z will be defined on the branch −π/2 ≤ arg(z) <
3π/2.

Note that upon applying Lemma 4.24,

lim
R→∞

∮
γR

ln2 z

z2 + a2 dz = 0,
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Re z

Im z

ia

Figure 4: The contour of integration associated with equation (4.4).

and that since z(ln z)2 → 0 as z → 0, one has that upon applying Lemma 4.36

lim
ϸ→∞

∮
γϸ

ln2 z

z2 + a2 dz = 0.

Now consider the curve γ−. Here one has that∮
γ−

ln2 z

z2 + a2 dz =

∫ ϸ

R

ln2(reiπ)
(reiπ)2 + a2 eiπ dr

=

∫ R

ϸ

ln2 x + 2iπ ln x − π2

x2 + a2 dx.

Thus, upon letting ϸ → 0 and R → ∞ one has that∮
γ

ln2 z

z2 + a2 dz = 2
∫ +∞

0

ln2 x

x2 + a2 dx + 2iπ
∫ +∞

0

ln x
x2 + a2 dx − π2

∫ +∞

0

1
x2 + a2 dx

= 2
∫ +∞

0

ln2 x

x2 + a2 dx + 2iπ
∫ +∞

0

ln x
x2 + a2 dx −

π3

2a
.

Since

Resf (ia) =
ln2(ia)

2ia
=
π

2a
lna − i

ln2 a − π2/4
2a

,

by the residue theorem one has that∮
γ

ln2 z

z2 + a2 dz =
π

a
(ln2 a −

π2

4
) + i

π2 lna
a

.

Equating real and imaginary parts then yields that∫ +∞

0

ln2 x

x2 + a2 dx =
π3

8a
+
π ln2 a

2a
,

and that ∫ +∞

0

ln x
x2 + a2 dx =

π lna
2a

.

Example. Consider ∫ ∞

0

xα

x2 + 1
dx, |α| < 1.
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Note that the improper integral converges at both x = 0 and x = ∞. This will be computed by evaluating∮
γ

zα

z2 + 1
dz

where γ is the same contour as in the previous example, with 0 < ϸ < 1 < R. Furthermore, zα will be defined
on the branch −π/2 ≤ arg(z) < 3π/2. Note that

lim
R→∞

∮
γR

zα

z2 + 1
dz = 0,

and that since z1+α → 0 as z → 0,

lim
ϸ→∞

∮
γϸ

zα

z2 + 1
dz = 0.

Now consider the curve γ−. Here one has that∮
γ−

zα

z2 + 1
dz =

∫ ϸ

R

(reiπ)α

(reiπ)2 + 1
eiπ dr

= eiαπ
∫ R

ϸ

xα

x2 + 1
dx.

Thus, upon letting ϸ → 0 and R → ∞ one has that∮
γ

zα

z2 + 1
dz = eiαπ/2(eiαπ/2 + e−iαπ/2)

∫ ∞

0

xα

x2 + 1
dx.

Since

Resf (i) =
eiαπ/2

2i
,

by the residue theorem one has that ∮
γ

zα

z2 + 1
dz = πeiαπ/2.

Equating real and imaginary parts then yields that∫ ∞

0

xα

x2 + 1
dx =

π

2 cos(απ/2)
.

4.9. The Cauchy Principal Value

In Problem 4.55 you were asked to compute∫ +∞

−∞

x

sinh(x) − 1
dx.

However, this integral does not converge, as there is a pole of order one at x+ B ln(
√

2 + 1). A careful look
at the calculation shows, however, that you actually computed

lim
ϸ→0+

(
∫ x+−ϸ

−∞

+

∫ +∞

x++ϸ
)

x

sinh(x) − 1
dx,

which did converge.
Proposition 4.38. Suppose that f ∈ C1([−1,+1]). Then

lim
ϸ→0+

(
∫ −ϸ

−1
+

∫ +1

+ϸ
)
f (x)
x

dx

exists.
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Proof: By Taylor’s theorem one has that

f (x) = f (0) + x

∫ 1

0
f ′(sx) ds,

so that
f (x)
x

=
f (0)
x

+

∫ 1

0
f ′(sx) ds.

It is clear that

lim
ϸ→0+

(
∫ −ϸ

−1
+

∫ +1

+ϸ
)
∫ 1

0
f ′(sx) ds dx < ∞.

Now, it can be quickly checked that

lim
ϸ→0+

(
∫ −ϸ

−1
+

∫ +1

+ϸ
)
f (0)
x

dx = 0;

hence, the limit exists. �

Definition 4.39. Suppose that f (x) has a pole at x = x0. If a < x0 < b, the Cauchy Principal Value integral
is given by

P.V.
∫ b

a
f (x) dx B lim

ϸ→0+

(∫ x0−ϸ

a
f (x) dx +

∫ b

x0+ϸ
f (x) dx

)
.

Example. One has that

P.V.
∫ 2

−1

dx
x

= ln 2,

while in general the integral does not exist.
Example. Consider

P.V.
∫ +∞

−∞

epx

1 − ex
dx, p ∈ (0,1). (4.5)

Note that the improper integral converges at x = ±∞; however, it diverges at the simple pole x = 0. For this
reason one must compute the Cauchy Principal Value of the integral. Upon setting

f (z) B
epz

1 − ez
,

one sees that f (z) has simple poles at z = i2kπ, k ∈ Z; furthermore, one sees that f (z + i2π) = ei2πpf (z). This
second observation justifies evaluating ∮

γ
f (z) dz,

where γ is composed of the pieces (see Figure 5):

γ−0 B ϸ + t, 0 ≤ t ≤ R − ϸ
γ+

0 B −R + t, 0 ≤ t ≤ R − ϸ

γϸ0 B ϸeiφ, 0 ≤ φ ≤ π
γ−1 B ϸ + t + i2π, 0 ≤ t ≤ R − ϸ
γ+

1 B −R + t + i2π, 0 ≤ t ≤ R − ϸ

γϸ1 B i2π + ϸeiφ, π ≤ φ ≤ 2π
γ` B −R + it, 0 ≤ t ≤ 2π
γr B R + it, 0 ≤ t ≤ 2π.

An application of the residue theorem shows that∮
γ
f (z) dz = 0.
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Re z

Im z

i2π

Figure 5: The contour of integration associated with equation (4.5).

It is not difficult to show that

lim
R→+∞

∮
γ`,r

f (z) dz = 0.

Furthermore, upon applying Lemma 4.36 one has that

lim
ϸ→0+

∮
γϸ0

f (z) dz = iπ, lim
ϸ→0+

∮
γϸ1

f (z) dz = iπei2πp.

One then sees that upon letting R → +∞, ϸ → 0+,

(1 − ei2πp) P.V.
∫ +∞

−∞

f (x) dx + iπ(1 + ei2πp) = 0,

i.e.,

P.V.
∫ +∞

−∞

f (x) dx = π cot(πp).

An important application of complex variables is to solve equations for functions analytic in a certain
region, given a relationship on a boundary (the Riemann-Hilbert problem). A simple example is the following.
Suppose that ψ+(z) is holomorphic for Im z > 0, and ψ−(z) is holomorphic for Im z < 0. Further suppose
that there is an absolutely integrable function f (z) which is holomorphic on Im z = 0. We wish to find ψ±(z)
such that ψ±(z)→ 0 as z → ∞ and

ψ+(x) − ψ−(x) = f (x), x ∈ R.

Set

F±(x) B lim
ϸ→0+

1
2πi

∫ +∞

−∞

f (z)
z − (x ± iϸ)

dz,

and consider F+(x). Set γ to be the contour composed of the pieces:

γ− B −R + t, 0 ≤ t ≤ R − x − δ
γ+ B x + δ + t, 0 ≤ t ≤ R − δ

γδ B z = x + δeiφ, π ≤ φ ≤ 2π.

If one sets h(z) to be the integrand, one clearly has that

Resh(x + iϸ) = f (x + iϸ).
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Hence, one gets that

F+(x) = lim
R→∞

lim
δ→0+

lim
ϸ→0+

∮
γ
h(z) dz

= P.V.
1

2πi

∫ +∞

−∞

f (z)
z − x

dz +
1
2
f (x).

Similarly,

F−(x) = P.V.
1

2πi

∫ +∞

−∞

f (z)
z − x

dz −
1
2
f (x).

Note that this implies that
F+(x) − F−(x) = f (x).

Thus, the problem is solved by setting ψ±(x) = F±(x).
Definition 4.40. The Hilbert transform is given by

H(f )(x) B P.V.
1
π

∫ +∞

−∞

f (y)
y − x

dy.

Remark 4.41. One has that:

(a) The solution to the above problem in the case that f (z) is holomorphic on Im z = 0 is then given by

ψ±(x) =
1
2

(±1 − iH)f (x).

(b) It can be shown that the above solution is still valid even in the case that f (x) is only Hĺolder
continuous for x ∈ R [1, Lemma 7.2.1].

Example. Let us compute H(f ), where f (x) B 1/(1 + x2). Set g(z) B f (z)/(z − x). We will evaluate∮
γ
g(z) dz,

where we consider the contour γ which is composed of the pieces:

γ− B −R + t, 0 ≤ t ≤ R − x − δ
γ+ B x + δ + t, 0 ≤ t ≤ R − δ

γϸ B z = x + ϸeiφ, 0 ≤ φ ≤ π

γR B z = Reiφ, 0 ≤ φ ≤ π.

It is clear that
lim
R→∞

∮
γR

g(z) dz = 0, lim
ϸ→0+

∮
γϸ

g(z) dz = −iπf (x).

Finally, as an application of the residue theorem one has that∮
γ
g(z) dz = −π

(
x + i

1 + x2

)
.

Thus, in the limit one has that

P.V.
∫ +∞

−∞

f (z)
z − x

dz − iπf (x) = −π

(
x + i

1 + x2

)
i.e.,

H(f )(x) = −
x

1 + x2 .
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5. The Zeros of a Holomorphic Function

Throughout this chapter it will be assumed that f : U 7→ C is holomorphic, where U ⊂ C is open and
connected. It will further be assumed that f . 0 on U .

5.1. Counting zeros and poles

Suppose that f (z0) = 0 for some z0 ∈ U . There exists an N ∈ N such that f (N)(z0) , 0, so that f has the
Taylor expansion

f (z) =

+∞∑
n=N

f (n)(z0)
n!

(z − z0)n , z ∈ D(z0, r).

Definition 5.1. f has a zero or order (multiplicity) N . If N = 1, the point z0 is a simple zero.
Now set

H(z) B
f (z)

(z − z0)N
.

One has that H(z) is holomorphic on D(z0, r) with

H(z0) =
f (N)(z0)
N!

, 0.

Now, for ζ ∈ D(z0, r)\{z0} one has that

f ′(ζ )
f (ζ )

=
(ζ − z0)NH ′(ζ ) + N(ζ − z0)N−1H(ζ )

(ζ − z0)NH(ζ )

=
H ′(ζ )
H(ζ )

+
N

ζ − z0
.

By construction H ′(ζ )/H(ζ ) is holomorphic on D(z0, r); hence,∮
∂D(z0,r)

H ′(ζ )
H(ζ )

dζ = 0.

Thus, ∮
∂D(z0,r)

f ′(ζ )
f (ζ )

dζ = N

∮
∂D(z0,r)

1
ζ − z0

dζ = 2πiN.

The following proposition has now been proven.
Proposition 5.2. If f has a zero of order N at z0 and no other zeros in D(z0, r), then

1
2πi

∮
∂D(z0,r)

f ′(ζ )
f (ζ )

dζ = N.

Now suppose that f has k zeros z1, . . . , zk ∈ D(P, r) with multiplicities n` at z`, and further suppose that
f is nonvanishing on ∂D(P, r). Setting

H(z) B
f (z)

(z − z1)n1 · · · (z − zk)nk

yields that H(z) is nonzero and holomorphic on D(P, r). Calculating as above yields that

f ′(ζ )
f (ζ )

=
H ′(ζ )
H(ζ )

+

k∑
`=1

n`
ζ − z`

,

which further yields that ∮
∂D(P,r)

f ′(ζ )
f (ζ )

dζ = 2πi
k∑
`=1

n`.

We have now proven:
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Lemma 5.3 (Argument Principle). If f has zeros of order n` at the points z` ∈ D(P, r) and is nonzero on
∂D(P, r), then

1
2πi

∮
∂D(P,r)

f ′(ζ )
f (ζ )

dζ =

k∑
`=1

n`.

Remark 5.4. If one writes
f (z) = |f (z)|ei arg f (z),

then one has that
f ′(ζ )
f (ζ )

=
d

dζ
ln(f (ζ )),

so that
1

2πi

∮
∂D(P,r)

f ′(ζ )
f (ζ )

dζ =
1

2π
(arg f (z))|∂D(P,r).

The quantity
1

2π
(arg f (z))|∂D(P,r)

is the winding number.
Example. Let us determine the number of zeros (counting multiplicity) of the function f (z) B z3 + 1 located
in the first quadrant. Define

arg f (z) = φ, tanφ =
Im f (z)
Re f (z)

.

Set γ to be the curve composed of the pieces:

γr B t, 0 ≤ t ≤ R
γi B it, 0 ≤ t ≤ R

γR B Reiφ, 0 ≤ φ ≤ π/2.

On γr it is clear that arg f (z) = 0. Upon setting z B Reiθ, one has that for R � 1 that on γR, f (z) ∼ R3ei3θ, so
that as R → +∞,

0 ≤ arg f (z) ≤
3π
2
.

Finally, consider γi. On this curve f (z) = −iy3 + 1, so that for tanφ runs from 3π/2 to 2π as y descends from
+∞ to 0. Here we use the fact that Im f < 0 and Re f > 0 on γi. Thus, from the Argument Principle we have
that

lim
R→∞

∮
γ

f ′(ζ )
f (ζ )

dζ = 1.

Example. When considering the stability of nonlinear waves, it is important to find those eigenvalues which
satisfy Reλ > 0, as these eigenvalues correspond to instabilities. In some circumstances there is a function,
E(λ), holomorphic in U B {λ ∈ C : Reλ > 0} such that E(λ) = 0 for λ ∈ U if and only if λ is an eigenvalue.
This function E(λ) is the generalization of the characteristic equation used to calculate the eigenvalues of
matrices. The interested student should consult my web page for more details.

Now suppose that f has a pole of order N at z = P, and is nowhere zero on D(P, r)\{P}. Upon setting

H(z) B (z − P)N f (z),

one has that H(z) is holomorphic and nonzero on D(P, r). Arguing as above yields that

H ′(ζ )
H(ζ )

=
f ′(ζ )
f (ζ )

+
N

ζ − P
,

so that ∮
∂D(P,r)

f ′(ζ )
f (ζ )

dζ = −2πiN.

Clearly this formula generalizes to multiple poles. Combining this result along with the Argument Principle
yields the following.
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Lemma 5.5 (Argument Principle for Meromorphic Functions). Suppose that f is meromorphic on D(P, r)
and has neither zeros nor poles on ∂D(P, r). Let z1, . . . , zp ∈ D(P, r) be the zeros of order n`, and let
w1, . . . , wq ∈ D(P, r) be the poles of order m`. Then

1
2πi

∮
∂D(P,r)

f ′(ζ )
f (ζ )

dζ =

p∑
`=1

n` −
q∑
`=1

m`.

5.2. The local geometry of holomorphic functions

Theorem 5.6 (Open mapping theorem). Let f : U 7→ C be a nonconstant holomorphic function on the open
connected set U . Then f (U ) ⊂ C is open.

Proof: Given Q ∈ f (U ), we need to show that there is an ϸ > 0 such that D(Q, ϸ) ⊂ f (U ).
Select P ∈ U such that f (P) = Q, and set g(z) B f (z) − Q. Since g(P) = 0 and g(z) is nonconstant, there

is an r > 0 such that D(P, r) ⊂ U and g(z) , 0 for z ∈ D(P, r)\{P}. The argument principle implies that there
is an n ∈ N such that

1
2πi

∮
∂D(P,r)

f ′(ζ )
f (ζ ) − Q

dζ = n.

By the continuity of g(z) and the fact that ∂D(P, r) is compact, one has that there is an ϸ > 0 such that
|g(z)| > ϸ for z ∈ ∂D(P, r). The claim is that for this ϸ, D(Q, ϸ) ⊂ f (U ).

Set
N(z) B

1
2πi

∮
∂D(P,r)

f ′(ζ )
f (ζ ) − z

dζ, z ∈ D(Q, ϸ),

and note that N(Q) = n. Further note that for z ∈ D(Q, ϸ),

|f (ζ ) − z| ≥ |f (ζ ) − Q| − |z − Q| > ϸ − |z − Q| > 0;

hence, a standard argument yields that N(z) is holomorphic with

N ′(z) =
1

2πi

∮
∂D(P,r)

f ′(ζ )
(f (ζ ) − z)2 dζ.

Setting

H(ζ ) B −
1

f (ζ ) − z
,

one clearly has that

H ′(ζ ) =
f ′(ζ )

(f (ζ ) − z)2 .

Hence, N ′(z) = 0 for all z ∈ D(Q, ϸ), so that N(z) is a constant. From the above one then has that N(z) = n.
Since n ≥ 1, for each fixed z ∈ D(Q, ϸ) there is a ζ ∈ D(P, r) such that f (ζ ) = z. Hence, D(Q, ϸ) ⊂ f (U ),

which proves the claim. �

Remark 5.7. The fact that f is holomorphic is crucial. For a counterexample, consider f (z) B |z|2, for which
f (C) = R, and R ⊂ C is not open.

Suppose that f (z) − Q has a zero of order k for some k ∈ N. Then to lowest order one has that
f (z) ∼ Q + ak(z − P)k, so that every w ∈ D(Q, ϸ) has k distinct preimages, i.e.,

z ∼

(
w − Q

ak

)1/k

.

Note that in this scenario, f ′(P) = 0. The point P is called a multiple point of order k. The question to be
answered: can this heuristic argument be made rigorous?
Lemma 5.8. Let f : U 7→ C be a nonconstant holomorphic function on the open connected set U . The
multiple points are isolated.
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Proof: Since f is nonconstant, f ′ is not identically zero. Since f ′ is holomorphic, the zeros of f ′ are
isolated. �

Remark 5.9. Alternatively, one has that branch points of f −1 are isolated.
Theorem 5.10. Let f : U 7→ C be a nonconstant holomorphic function on the open connected set U . Let
P ∈ U be such that f (P) = Q with order k. There exists a δ, ϸ > 0 such that each q ∈ D(Q, ϸ)\{Q} has k
distinct preimages in D(P, δ).

Proof: From the previous lemma there exists a δ1 > 0 such that each z ∈ D(P, δ1)\{P} is a simple point of
f . Take 0 < δ < δ1, and choose ϸ > 0 such that D(Q, ϸ) ⊂ f (D(P, δ)) with D(Q, ϸ) ∩ f (∂D(P, δ)) = ∅. As in the
proof of the Open Mapping Theorem, for each q ∈ D(Q, ϸ)\{Q} one has that

1
2πi

∮
∂D(P,r)

f ′(ζ )
f (ζ ) − q

dζ = k.

If p1, . . . , p` ∈ D(P, δ) are the zeros of f (z) − q with n1, . . . , n` as their orders, then
∑
nj = k. However, the

choice of δ yields that nj = 1 for each j, so that ` = k. Hence, the point q has precisely k preimages p1, . . . , pk,
each of which is a simple point of f . �

5.3. Further results on the zeros of holomorphic functions

Let f, g : U 7→ C be holomorphic. Suppose that D(P, r) ⊂ U , and that for each ζ ∈ ∂D(P, r) one has that

|f (ζ ) − g(ζ )| < |g(ζ )|. (5.1)

If one further assumes that both f and g are nonzero for ζ ∈ D(P, r), the number of zeros of f and g within
D(P, r) can be determined by a winding number calculation. If one defines

ft(ζ ) B tf (ζ ) + (1 − t)g(ζ ) = g(ζ ) + t(f (ζ ) − g(ζ )), t ∈ [0,1]

one has that as a consequence of equation (5.1) that ft(ζ ) , 0 for each t ∈ [0,1]. Now set

It B
1

2πi

∮
∂D(P,r)

f ′t (ζ )
ft(ζ )

dζ.

Since It ∈ N is continuous, there exists an integer k such that It ≡ k. In particular, I0 = I1. This argument
yields:
Theorem 5.11 (Rouché’s theorem). Let f, g : U 7→ C be holomorphic. Suppose that D(P, r) ⊂ U , and that
for each ζ ∈ ∂D(P, r) one has that

|f (ζ ) − g(ζ )| < |g(ζ )|.

If f and g are nonzero for ζ ∈ ∂D(P, r), then

1
2πi

∮
∂D(P,r)

f ′(ζ )
f (ζ )

dζ =
1

2πi

∮
∂D(P,r)

g′(ζ )
g(ζ )

dζ.

If one maps f 7→ f + g in Theorem 5.11, then one gets the following version of Rouché’s theorem.
Corollary 5.12. Let f, g : U 7→ C be holomorphic. Suppose that D(P, r) ⊂ U , and that for each ζ ∈ ∂D(P, r)
one has that

|f (ζ )| < |g(ζ )|.

Set h(z) B f (z) + g(z). If h and g are nonzero for ζ ∈ ∂D(P, r), then

1
2πi

∮
∂D(P,r)

g′(ζ )
g(ζ )

dζ =
1

2πi

∮
∂D(P,r)

h′(ζ )
h(ζ )

dζ.
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Example. Consider h(z) B ez − 4z − 1. We will show that h(z) = 0 has exactly one solution in D(0,1). Set

g(z) B −4z, f (z) B ez − 1.

For z ∈ ∂D(0,1) one has that
|g(z)| = 4, |f (z)| ≤ |ez | + 1 < e + 1,

so that |f (z)| < |g(z)| for z ∈ ∂D(0,1). Since g(z) = 0 has only one solution in D(0,1), by Rouché’s theorem
h(z) = 0 has only one solution.
Theorem 5.13 (Hurwitz’s theorem). Suppose that U ⊂ C is open and connected, and that fj : U 7→ C is
holomorphic and nowhere vanishing for each j ∈ N. If fj → f0 uniformly on compact subsets of U , then
either f0 ≡ 0 or f0(z) = 0 has no solution.
Remark 5.14. By hypothesis, f0 is holomorphic.

Proof: Suppose that there exists a P ∈ U such that f0(P) = 0. If f0 . 0, then there exists an r > 0 such that
D(P, r) ⊂ U with f0(z) , 0 for z ∈ D(P, r)\{P}. Hence,

1
2πi

∮
∂D(P,r)

f ′0(ζ )
f0(ζ )

dζ = k, k ∈ N.

However, by hypothesis for each j one has that

1
2πi

∮
∂D(P,r)

f ′j (ζ )

fj(ζ )
dζ = 0.

Since fj → f0 uniformly on D(P, r), this yields a contradiction. �

Remark 5.15. Hurwitz’s theorem can be relaxed to state that if for some N and some r > 0,

1
2πi

∮
∂D(P,r)

f ′j (ζ )

fj(ζ )
dζ = k, j ≥ N,

with f0(ζ ) , 0 for ζ ∈ ∂D(P, R), then
1

2πi

∮
∂D(P,r)

f ′0(ζ )
f0(ζ )

dζ = k.

Example. Let
0 < a0 < a1 < · · · < an ,

and consider
g(θ) B a0 + a1 cos θ + · · · + an cosnθ.

We will show that g(θ) = 0 has exactly 2n distinct solutions in (0,2π), and no imaginary solutions. Consider

p(z) B a0 + a1z + · · · + anz
n ,

and note that g(θ) = Re p(eiθ). Clearly, p(z) > 0 for z ∈ R+. Assume that z < R+. Then

|(z − 1)p(z)| ≥ |anzn+1| − |a0 + (a1 − a0)z + · · · + (an − an−1)zn |

> |anz
n+1| − [a0 + (a1 − a0)|z| + · · · + (an − an−1)|zn |].

In the second inequality the facts were used that aj −aj−1 > 0 and for z < R+, a0, (a1 −a0)z, . . . , (an −an−1)zn

do not all have the same direction. Now assume that |z| ≥ 1. Then one has that

a0 + (a1 − a0)|z| + · · · + (an − an−1)|zn | ≤ [a0 + (a1 − a0) + · · · + (an − an−1)]|z|n+1

≤ an |z|
n+1.

Thus, one has that
|(z − 1)p(z)| > an |z|n+1 − an |z|

n+1 = 0,
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i.e., (z−1)p(z) , 0 for |z| ≥ 1 and z , 1. Hence, the n zeros of p(z) lie in D(0,1). Set γ B ∂D(0,1). If the curve
γ is traversed once in the counterclockwise direction, then by the argument principle the image of γ under
the mapping p(z) must wind around the origin n times. In particular, this implies that there are at least 2n
points (n in the upper-half plane, and n in the lower-half plane) at which the image intersects Re z = 0. Each
intersection point corresponds to a particular value θ = arg z; furthermore, each point satisfies Re p(eiθ) = 0.
Hence, there exist at least 2n distinct solutions to g(θ) = 0. Now, to see that there are exactly 2n roots,
write

cos kθ =
1
2

(ζ k + ζ −k), ζ B eiθ.

One then has that
g(θ) =

1
2
ζ −nh(ζ ),

where
h(ζ ) B an + an−1ζ + · · · + a1ζ

n−1 + 2a0ζ
n + a1ζ

n+1 + · · · + anζ
2n.

Clearly, h(ζ ) = 0 has exactly 2n roots, and each of these roots satisfies ζ = eiθ.
Example. Let φ(t) > 0 be a strictly increasing continuous function on [0,1], and set

f (z) B
∫ 1

0
φ(t) cos(zt) dt.

Define the appropriate Riemann sums by

fn(z) B
1
n

n∑
k=1

φ
(k
n

)
cos

kz

n
.

It is clear that fn(z) → f (z) uniformly on compact sets; hence, f (z) is entire. Furthermore, since f (0) > 0,
one has that f (z) . 0. Now, if one sets θ B z/n, then fn(θ) is of the form prescribed in the previous example,
with

ak B
1
n
φ

(k
n

)
.

Thus, for each n, fn(θ) = 0 has exactly 2n roots in (0,2π), i.e., fn(z) = 0 has 2n real roots of the form z = nθ
for θ ∈ (0,2π). As an application of Hurwitz’s theorem, all the zeros (if any) of f (z) are real and positive.

5.4. The maximum modulus principle

Definition 5.16. U ⊂ C is a domain if it is a connected open set. U is a bounded domain if there is an
R > 0 such that U ⊂ D(0, R).

If U is a domain, and f : U 7→ C is holomorphic and nonconstant, then f (U ) is open. Suppose that
there is a point P ∈ U such that |f (P)| ≥ |f (z)| for all z ∈ U . Since f is nonconstant, as an application of
the open mapping principle there is an ϸ > 0 such that D(f (P), ϸ) ⊂ f (U ). In particular, there exist points
ζ ∈ D(f (P), ϸ) such that |ζ | > |f (P)|. Hence, f must be constant. This argument yields:
Theorem 5.17 (Maximum modulus principle). Let f : U 7→ C be holomorphic and nonconstant on the
domain U . There is no point P ∈ U such that |f (P)| ≥ |f (z)| for all z ∈ U .

Now suppose that U is a bounded domain. Clearly |f (z)| has a maximum on U . From the Maximum
Modulus Principle this maximum must occur on ∂U .
Corollary 5.18 (Maximum modulus theorem). Let f : U 7→ C be holomorphic and nonconstant on the
bounded domain U . The maximum of |f (z)| on U occurs on ∂U .

Now suppose that f (z) never vanishes on U . Upon setting g(z) B 1/f (z) and applying the Maximum
Modulus Principle to g(z), one gets the following corollary.
Corollary 5.19. Let f : U 7→ C be holomorphic, nonzero, and nonconstant on the domain U . There is no
point P ∈ U such that |f (P)| ≤ |f (z)| for all z ∈ U .
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An important application of these results is the following. Recall that if f (x + iy) B u(x, y) + iv(x, y) is
holomorphic, then the harmonic functions u(x, y) and v(x, y) both satisfy Laplace’s equation ∆φ = 0 on U .
Setting g(z) B ef (z), one has that |g(z)| = eu(x,y), while setting h(z) B e−if (z) yields |h(z)| = ev(x,y). Note that
both g(z) and h(z) are nonzero on U ; hence, the Maximum Modulus Theorem and its corollaries yields the
following important PDE result (also see [8, Theorem 7.2.1]):
Theorem 5.20. Let U ⊂ R2 be an open and connected set, and let u : U 7→ R be a harmonic function. One
has that u achieves its maximum and minimum values only on ∂U .

5.5. The Schwarz lemma

The following application of the Maximum Modulus Principle will play an important role in problems
involving mappings of holomorphic functions.
Theorem 5.21 (Schwarz’s lemma). Let f : D(0, R) 7→ C be holomorphic and satisfy f (0) = 0. Suppose that

|f (z)| ≤ M < ∞

for all z ∈ D(0, R). Then one has that

|f (z)| ≤
M

R
|z|, |f ′(0)| ≤

M

R
.

Furthermore, if equality is achieved for some z ∈ D(0, R), then

f (z) =
M

R
eiθz

for some θ ∈ [0,2π).

Proof: Set g(z) B f (z)/z. Since f (z) is holomorphic with f (0) = 0, one has that g(z) is holomorphic on
D(0, R) with

lim
z→0

g(z) = f ′(0).

Let ϸ > 0 be given, and consider g(z) on D(0, R − ϸ). One has that

|g(z)| ≤
M

R − ϸ
, z ∈ ∂D(0, R − ϸ).

From the Maximum Modulus Theorem one then has that this estimate holds for all z ∈ D(0, R − ϸ). Letting
ϸ → 0+ then yields the desired result. Note that if equality is achieved for z ∈ D(0, R), then by the Maximum
Modulus Principle g(z) is constant on D(0, R). This yields the second part of the lemma. �

Schwarz’s lemma can be generalized by removing the hypothesis f (0) = 0. The result is the Schwarz-Pick
Lemma [8, Theorem 5.5.2].
Theorem 5.22. Let f : D(0,1) 7→ D(0,1) be holomorphic. Let a ∈ D(0,1) be given. For b = f (a) one has
the estimate

|f ′(a)| ≤
1 − |b|2

1 − |a|2
.

6. Holomorphic Functions as Geometric Mappings

Definition 6.1. Let U, V ⊂ C be open. f : U 7→ V is a conformal (biholomorphic) mapping if it is one-to-one.
Note that if f is conformal, then f −1 exists and is conformal. Thus, from the perspective of complex

function theory the sets U and V are indistinguishable. Upon recalling the result of Lemma 4.33, one has
that f (z) is conformal at z0 if f ′(z0) , 0. However, if f ′(z) , 0 for all z ∈ U , this does not necessarily imply
that f is conformal. For a counterexample, consider ez : C 7→ C\{0}. Finally, if f ′(z0) = 0, then as an
application of Theorem 5.10 one has that f is not conformal in any neighborhood of z0.
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6.1. Biholomorphic mappings of the complex plane to itself

Lemma 6.2. Suppose that f : C 7→ C is a conformal mapping. Then

lim
z→∞
|f (z)| = +∞.

Remark 6.3. Since f is entire, this lemma implies that f (z) must be a polynomial.

Proof: For each ϸ > 0 set Rϸ B {z ∈ C : |z| ≤ ϸ−1}. Since f −1 is holomorphic, and hence continuous, the set
Sϸ B f −1(Rϸ) is compact. There is then a Cϸ > 0 such that Sϸ ⊂ D(0, Cϸ). If w < D(0, Cϸ), then w < Sϸ, so
that |f (w)| > 1/ϸ. This is the desired result. �

Now, since f is entire with a pole at∞, by Lemma 4.29 one has that f must be a nonconstant polynomial.
As a consequence of the above discussion, if f is conformal it must satisfy the minimal requirement that
f ′(z) , 0 for all z ∈ C. This is possible if and only if f (z) = az + b, a ∈ C\{0}

Theorem 6.4. f : C 7→ C is a conformal mapping if and only if

f (z) = az + b, a , 0.

6.2. Biholomorphic mappings of the unit disc to itself

In this section D B D(0,1).

Lemma 6.5. Let f : D 7→ D be a conformal mapping such that f (0) = 0. There is an ω ∈ C with |ω| = 1 such
that

f (z) = ωz.

Remark 6.6. Note that the statement is actually "if and only if".

Proof: Set g(z) B f −1(z). Since f (0) = g(0) = 0, by the Schwarz lemma

|f ′(0)| ≤ 1, |g′(0)| ≤ 1.

Since f ◦ g(z) ≡ z, by the chain rule
1 = f ′(0)g′(0);

hence, |f ′(0)| = |g′(0)| = 1, i.e., f ′(0) = ω with |ω| = 1. By the Schwarz lemma one then has that

f (z) = ωz. �

Consider the Mĺobius transformation

φa(z) B
z − a

1 − āz
, a ∈ D(0,1).

It is an exercise to check that φa : D 7→ D, with φ−1
a = φ−a . Hence, φa is a conformal mapping of the unit

disk to itself. Note that
f (z) = ωφa(z)

is a conformal self-map of D(0,1).

Theorem 6.7. Let f : D 7→ D be holomorphic. f is conformal if and only if there exists a ∈ D(0,1) and
ω ∈ ∂D(0,1) such that

f (z) = ωφa(z).
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Proof: Let f : D 7→ D be a conformal mapping. Set b B f (0), and consider the map g B φb ◦ f , which is
clearly a conformal self-map of the disk. Noting that g(0) = 0, we have that there exists an ω ∈ ∂D(0,1) such
that

g(z) = ωz.

However, this implies that

f (z) = φ−b(ωz)
= ωφ−b/ω(z). �

Remark 6.8. The conformal self-maps of the unit disk form a group under the operation of composition.
This group is known as the automorphism group of D, and the maps themselves are referred to as the
automorphisms of D.

6.3. Linear fractional transformations

Consider the linear fractional transformation

`(z) B
az + b

cz + d
, ad − bc , 0.

The restriction on the coefficients follows from the fact that

`′(z) =
ad − bc

(cz + d)2 ,

and that a minimal condition for ` to be a conformal map is that `′(z) , 0. If c , 0, then `(z) has a simple
pole at z = −d/c; otherwise, it has a simple pole at ∞. Upon defining a neighborhood of ∞ as C\D(0, R) for
each R > 0, one has that `(z) is continuous on C ∪ {∞}. It is easy to check that

`−1(z) = −
dz − b

cz − a
.

Hence, `(z) is a conformal mapping of C ∪ {∞} to itself. Finally, it is easy to check that if `1, `2 : C ∪ {∞} 7→
C ∪ {∞}, then `1 ◦ `2 is also a linear fractional transformation.

Now suppose that f : C∪{∞} 7→ C∪{∞} is a conformal mapping. Let ` be a linear fractional transformation
such that ` ◦ f (∞) = ∞; hence, ` ◦ f : C∪ {∞} 7→ C∪ {∞} is a conformal mapping which maps ∞ to ∞. Thus,
by Theorem 6.4 there exist constants α1, α2 ∈ C such that

` ◦ f (z) = α1z + α2.

Inverting ` yields that f (z) is also a linear fractional transformation.

Theorem 6.9. f : C ∪ {∞} 7→ C ∪ {∞} is a conformal mapping if and only if f is a linear fractional transfor-
mation.

As seen in the next result, linear fractional transformations have very nice mapping properties.

Theorem 6.10. Let C be the set of subsets of C ∪ {∞} consisting of:

(a) circles

(b) L ∪ {∞}, where L is a line.

If ` is a linear fractional transformation, and if φ ∈ C, then `(φ) ∈ C.

Proof: Set
`d(z) B az, `t(z) = z + b, `iz =

1
z
.
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It can be shown that every linear fractional transformation is a composition of `d, `t, `i, so that it is enough to
verify the statement for each of these transformations. Note that the result is clearly true when considering
`d and `t. Now consider the mapping `i applied to the arbitrary circle

x2 + y2 + ax + by + c = 0.

Setting w B 1/z with z , 0,∞. With w = u + iv one finds that

x = Re z =
u

u2 + v2 , y = Im z = −
v

u2 + v2 .

Substituting into the equation for the circle and simplifying yields that

c(u2 + v2) + au − bv + 1 = 0,

which is an element of C. �

Example. The Cayley transform is given by

`(z) =
z − i
z + i

.

For the Cayley transform one has that
`(∞) = 1, `(±1) = ∓i,

so that three points on R∪{∞} are sent to ∂D(0,1). By Theorem 6.10 one then has that `(R∪{∞}) = ∂D(0,1).
Since `(i) = 0, by continuity one necessarily has that the Cayley transform sends the upper half plane to
the interior of the unit disk.

6.5. Normal families

Definition 6.11. Let fj : U 7→ C, where U ⊂ C is open. fj → f0 normally on U if fj → f0 uniformly on each
compact K ⊂ U .
Remark 6.12. If each fj is holomorphic, then one has that f0 is necessarily holomorphic.
Example. If fj(z) = zj + 1/j, then fj → f0 ≡ 0 normally on D(0,1). However, fj does not converge to f0
uniformly on all of D(0,1).
Definition 6.13. Let F = {fα}α∈A be a family of holomorphic functions on an open set U ⊂ C. One has that
F is bounded on compact sets if for each compact K ⊂ U there is a constant MK such that for all α ∈ A and
z ∈ K,

|fα(z)| ≤ MK .

Remark 6.14. The family {zj} is bounded on compact sets of D(0,1), whereas the family {sin jz} is not, as

sin jz = sin jx cosh jy + i cos jx sinh jy.

Theorem 6.15 (Montel’s theorem). Let U ⊂ C be open and let F be bounded on compact sets. For every
sequence {fj} ⊂ F there is a subsequence {fjk } which converges normally on U to a limit function f0.
Remark 6.16. It is important to realize that the subsequence is independent of the compact set K ⊂ U . It
is also important to note that the subsequence is not necessarily unique.

Proof: Let a compact K ⊂ U be given, and choose a compact L ⊂ U such that K ⊂ int(L). There is an η > 0
such that for any two points z,w ∈ K with |z − w| < η one has that γ(t) B w + t(z − w) ∈ L for t ∈ [0,1].
Since L is compact, there is an r > 0 such that for each ` ∈ L, D(`, r) ⊂ U . The Cauchy estimates then yield
that for each f ∈ F ,

|f ′(`)| ≤
ML

r
B C.
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Let z,w ∈ K be given with |z −w| < η, and fix an f ∈ F . One then has that

|f (z) − f (w)| =

∣∣∣∣∣∣
∮
γ
f ′(η) dη

∣∣∣∣∣∣
≤ C

∫ 1

0
|γ′(t)| dt

= C|z −w|.

This estimate is independent of f ; hence, for all f ∈ F one has that if |z −w| < η, then

|f (z) − f (w)| ≤ C|z −w|.

The family F is then equicontinuous, so by the Ascoli-Arzela theorem one has that for any {fj} ⊂ F there is
a uniformly convergent subsequence.

It must now be shown that there is a subsequence which converges on every compact K ⊂ U . Let
K1 ⊂ K2 ⊂ · · · be such that Kj ⊂ int(Kj+1) and ∪jKj = U . By the above argument there is a sequence {fj1 } ⊂ F
which converges uniformly on K1. There exists a subsequence {fj2 } ⊂ {fj1 } which converges uniformly on K2.
Continuing in this fashion, there is a subsequence {fjm } ⊂ {fjm−1 } which converges uniformly on Km for each
m ≥ 2. Define the sequence

gk B fkk .

One has that {gk} ⊂ F , and that {gk} ⊂ {fjm } for each m ≥ 1. Hence, {gk} converges uniformly on each Km .
Finally, let L ⊂ U be compact. Since L ⊂ ∪m int(Km) and L is compact, there is a finite number of the

int(Km)’s which cover L. Hence, by definition there is an M such that L ⊂ KM . The sequence {gk} converges
uniformly on KM , and hence L. �

Remark 6.17. Suppose that fj1 → f0 uniformly on K1, and fj2 → f̃0 uniformly on K2. Since {fj2 } ⊂ {fj1 } and
K1 ⊂ K2, one must have that f̃0(z) = f0(z) for all z ∈ K1. Assuming that K1 ⊂ K2 has an accumulation point,
one then has that f̃0(z) = f0(z) for all z ∈ K2, and hence one can choose {fj2 } = {fj1 }. This idea can be repeated
ad nauseam.

Example. Let F = {z/j}n∈N. For each compact K ⊂ C there is an MK such that |z/j| < Mk for all j ∈ N. One
clearly has that z/j → 0 normally on C.

Corollary 6.18. Let U ⊂ C be open, and let P ∈ U be fixed. Let F be a holomorphic family from U to D(0,1)
such that f (P) = 0 for all f ∈ F . There is a sequence {fj} ⊂ F which converges normally to f0 : U 7→ D(0,1)
such that

|f ′0(P)| ≥ |f ′(P)|

for all f ∈ F .

Proof: Choose r > 0 such that D(P, r) ⊂ U . Since |f (z)| ≤ 1 for all z ∈ U and all f ∈ F , by the Cauchy
estimates one has that |f ′(z)| ≤ 1/r for all z ∈ U and all f ∈ F . Set

λ B sup{|f ′(P)| : f ∈ F }.

There exists a sequence {fj} ⊂ F such that |f ′j (P)| → λ. Since |fj(z)| ≤ 1, by Montel’s theorem there
exists a subsequence {fjk } which converges normally on U to f0. By the Cauchy estimates, f ′jk (P) → f ′0(P);
hence, |f ′0(P)| = λ. The estimate has now been proven. Now suppose that there exists a z ∈ U such that
f0(z) ∈ ∂D(0,1). By the Maximum Modulus Theorem this then implies that f0(z) is a constant with |f0(z)| ≡ 1.
Since f0(P) = 0, one then has that f0 : U 7→ D(0,1). �

Corollary 6.19. Let
F B {f : U 7→ D(0,1) : f (P) = 0 and f is one-to-one}.

If F is nonempty, the function f0 is then one-to-one.
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Proof: Let b ∈ U be given, and consider gj(z) B fj(z) − fj(b) on U\{b}. Since fj is one-to-one, gj(z) , 0 for
z ∈ U\{b}. By Hurwitz’s theorem the limit function f0(z) − f0(b) is either nowhere vanishing on U\{b}, or is
identically zero. Now, one has that f ′(P) , 0 for each f ∈ F , for otherwise f would not be one-to-one. Since
F is nonempty, the function f0 satisfies f ′0(P) , 0. Hence, f0(z) − f0(b) is nowhere zero on U\{b}. Since b is
arbitrary, f0 is one-to-one. �

Remark 6.20. If f0 is onto, then one has that f0 is a conformal map from U to D. Some restrictions on U
may be necessary to achieve this result. For example, if U = C, then each f ∈ F is entire with |f (z)| ≤ 1.
This implies that each f is constant, and hence not one-to-one.

6.6. Holomorphically simply connected domains

After our discussion on multi-valued functions in Section 4.8, the following two results should come as
no surprise.
Lemma 6.21 (Holomorphic logarithm lemma). Let U ⊂ C be open and simply connected. If f : U 7→ C\{0}
is holomorphic, then there exists a holomorphic h : U 7→ C such that

f (z) = eh(z), z ∈ U.

Proof: Set
g(z) B

f ′(z)
f (z)

=
d

dz
ln(f (z)).

Since f is nowhere zero on U, g is holomorphic. Since U is simply connected, there exists a holomorphic
h : U 7→ C such that h′(z) = g(z). Let z0 ∈ U be given, and suppose that f (z0) = eh(z0). Set G(z) B f (z)e−h(z).
By construction, G(z0) = 1. Furthermore, by the product rule and the fact that h′ = g one gets that G′(z) ≡ 0.
Hence, G(z) ≡ 1, which proves the lemma. �

Remark 6.22. The fact that U is simply connected is crucial. If, for example, one considers the annulus
D(0,2)\D(0,1), then a holomorphic h does not exist even for f (z) = z (see [8, Problem 6.13]).
Corollary 6.23. For each n ∈ N there is a holomorphic g : U 7→ C\{0} such that

f (z) = [g(z)]n.

Proof: Set g(z) B eh(z)/n, where h is given in Lemma 6.21. �

6.7. The proof of the analytic form of the Riemann mapping theorem

Let U ⊂ C be open and simply connected; however, U , C. Let P ∈ U be fixed, and let

F B {f : U 7→ D(0,1) : f (P) = 0 and f is one-to-one}.

Lemma 6.24. F is nonempty.

Proof: Let Q ∈ C\U , and set φ(z) B z − Q. By Corollary 6.23 one has that there is a holomorphic h such
that h2 = φ. Since φ is one-to-one, h is one-to-one; furthermore, there does not exist distinct z1, z2 ∈ U
such that h(z1) = −h(z2). Since h is nonconstant, it is an open mapping. Set b B h(P). One can then
choose an r > 0 such that the image of h contains D(b, r), and yet is disjoint from D(−b, r). Therefore,

f (z) B
r

2(h(z) + b)

is holomorphic and one-to-one. Furthermore, since |h(z) + b| > r for z ∈ U , one has that f : U 7→ D(0,1).
Set c B f (P) (note that |c| < 1), and set

φc(z) B
z − c

1 − c̄z
.

The function fc B φc ◦ f : U 7→ D(0,1) is one-to-one with fc(P) = 0. �
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Lemma 6.25. If g ∈ F is such that
|g′(P)| = sup

h∈F
|h′(P)|,

then g : U 7→ D(0,1) is onto.

Proof: Suppose that there is a point R ∈ D(0,1) such that the image of g does not contain R. Set

φR(z) B
z − R

1 − R̄z
, φ(z) B φR ◦ g(z).

By construction φ : U 7→ D(0,1)\{0}. By Corollary 6.23 one has that there is a holomorphic ψ such that
ψ2 = φ. One has that ψ is one-to-one and has range contained in D(0,1). However, ψ < F , since it is
nonvanishing. Set Q B ψ(P), and

φQ(z) B
z − Q

1 − Q̄z
, ρ(z) B φQ ◦ ψ(z).

Then ρ : U 7→ D(0,1) is such that ρ(P) = 0; furthermore, ρ is one-to-one. Now,

ρ′(P) =
1

1 − |ψ(P)|2
ψ′(P);

furthermore, upon using the fact that g(P) = 0 one has that

2ψ(P)ψ′(P) = φ′(P) = (1 − |R|2)g′(P).

After substituting, some lengthy algebra, and using |φ(P)| = |R|, one gets that

ρ′(P) =
1 + |R|

2ψ(P)
g′(P).

Since R , 0 (as g is one-to-one with g(P) = 0) and |ψ(P)| =
√
|R|, one then gets that

|ρ′(P)| > |g′(P)|.

Thus, if g is not onto, then the assumption on g′ is violated. Hence, g must be onto. �

We now have the following result.
Theorem 6.26 (Riemann Mapping Theorem). Let U ⊂ C be simply connected with U , C. Then U is
conformally equivalent to D(0,1).

Now let fU : U 7→ D(0,1) be a conformal map, and fV : V 7→ D(0,1) be a conformal map. If one sets
f B f −1

V ◦ fU , then one has a conformal map from U to V .
Corollary 6.27. If U, V ⊂ C are both open, simply connected, and not equal to C, then U is conformally
equivalent to V .

7. Infinite Series and Products

We have seen that an entire function is defined by its derivatives at a single point. In particular, knowing
the values of the derivatives at a single point allows us to reconstruct the function for all z ∈ C. Suppose
that one wishes to reconstruct a function knowing only the location of its zeros. For example, if z1, . . . , zn
represent the zeros of a polynomial p(z), then one has that

p(z) = α
n∏
j=1

(z − zj), α ∈ C\{0}.

Can one write sin z in a similar manner?
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7.1. Basic concepts concerning infinite sums and products

For each N ∈ N define the partial products by

PN B
N∏
j=1

(1 + aj), aj ∈ C.

Definition 7.1. The infinite product
∞∏
j=1

(1 + aj)

is said to converge if

(a) only a finite number of {a1, a2, . . . } are equal to −1

(b) if N0 is such that aj , −1 for j > N0, then

lim
N→+∞

N∏
j=N0+1

(1 + aj)

exists and is nonzero.

If the product converges, its value is given by

PN0 · lim
N→+∞

N∏
j=N0+1

(1 + aj).

Remark 7.2. One has that if the product converges:

(a) then

lim
M,N→+∞

M∏
j=N

(1 + aj) = 1

[8, Problem 8.1]

(b) then
∞∏
j=1

(1 + aj) = lim
N→+∞

PN ;

however, the converse is not true (suppose that aj = −1/2 for all j).

The question to be answered is: what conditions are necessary on the sequence {aj} to ensure that the
infinite product converges?
Proposition 7.3. For 0 ≤ x ≤ 1,

1 + x ≤ ex ≤ 1 + 2x.

Proof: Use the Taylor expansion for ex and the estimate
∞∑
j=2

1
j!
≤

∞∑
j=2

1
2j−1 = 1. �

Proposition 7.4. Let {aj} ⊂ C be such that aj ∈ D(0,1) for all j. The partial product

Pa
N B

N∏
j=1

(1 + |aj |)

satisfies the estimate

exp

1
2

N∑
j=1

|aj |

 ≤ Pa
N ≤ exp

 N∑
j=1

|aj |

 .
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Proof: Using the previous proposition yields that 1 + |aj | ≤ e|aj |, and hence the right-hand inequality. Simi-
larly,

1 + |aj | = 1 + 2(
1
2
|aj |) ≥ e|aj |/2

yields the left-hand inequality. �

Corollary 7.5. The infinite product
∞∏
j=1

(1 + |aj |)

converges if and only if
∞∑
j=1

|aj |

converges.

Proof: Suppose that the infinite sum converges, so that Pa
N ≤ C. Since the sequence {Pa

N } is monotone
increasing and Pa

1 > 0, the sequence of partial products converges to a nonzero limit. Now suppose that the
infinite product converges. The monotone sequence

{exp

1
2

N∑
j=1

|aj |

}
is then bounded above, and hence converges. Since ex is one-to-one and continuous, this them implies that
the monotone sequence of partial sums converges. �

Now the question is: does the "absolute" convergence imply convergence? It is certainly true when
considering infinite sums.

Proposition 7.6. Let {aj} ⊂ C, and set

PN B
N∏

j=M+1

(1 + aj), Pa
N B

N∏
j=M+1

(1 + |aj |).

Then |PN − 1| ≤ Pa
N − 1.

Proof: One has that PN = 1+ monomial terms consisting of products of the aj ’s, whereas Pa
N = 1+ the

absolute value of the same monomials. The result now follows from the triangle inequality. �

Lemma 7.7. If the infinite product
∞∏
j=1

(1 + |aj |)

converges, then so does
∞∏
j=1

(1 + aj).

Proof: One has that
∏

(1 + |aj |) converges if and only if
∑
|aj | converges; hence, aj → 0 as j → +∞, so that

there is an N0 such that aj , −1 for j > N0. For J > N0 write

QJ B
J∏

j=N0+1

(1 + aj), Qa
J B

J∏
j=N0+1

(1 + |aj |).
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For M > N > N0 one then has that

|QM − QN | = |QN |

∣∣∣∣∣∣∣
M∏

j=N+1

(1 + aj) − 1

∣∣∣∣∣∣∣
≤ Qa

N

 M∏
j=N+1

(1 + |aj |) − 1


= |Qa

M − Q
a
N |.

The second line follows from Proposition 7.6. Thus, the convergence of {Qa
J } implies the convergence of {QJ }.

Finally, it must be shown that |QJ | ≥ δ > 0 for all J > N0. Choose M > N0 + 1 sufficiently large so that

N∏
j=M

(1 + |aj |) − 1 <
1
2
.

By Proposition 7.6 one then has that for N > M ,∣∣∣∣∣∣∣
N∏
j=M

(1 + aj) − 1

∣∣∣∣∣∣∣ < 1
2
,

so that ∣∣∣∣∣∣∣
N∏
j=M

(1 + aj)

∣∣∣∣∣∣∣ > 1
2
.

Hence,

|QN | =

∣∣∣∣∣∣∣
M−1∏
j=N0+1

(1 + aj)

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
N∏
j=M

(1 + aj)

∣∣∣∣∣∣∣
≥

1
2

∣∣∣∣∣∣∣
M−1∏
j=N0+1

(1 + aj)

∣∣∣∣∣∣∣ ,
which is the desired result. �

Corollary 7.8. If
∞∑
j=1

|aj |

converges, then
∞∏
j=1

(1 + aj)

converges.
We know quite a bit about the limit of sums of holomorphic functions. The above corollary allows us to

then talk about the infinite products of holomorphic functions in a concrete way.
Definition 7.9. The infinite product

∞∏
j=1

(1 + fj(z))

converges uniformly on a set E ⊂ C if

(a) if converges for each z ∈ E

(b) the sequence

{

N∏
j=1

(1 + fj(z))}

converges uniformly on E to the infinite product.
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Theorem 7.10. Let U ⊂ C be open. Let fj : U 7→ C be holomorphic, and suppose that
∑
|fj | converges

uniformly on compact sets. Then the infinite product
∏

(1 + fj(z)) converges uniformly on compact sets.
In particular, the limit f (z) is a holomorphic function. Finally, f (z0) = 0 for some z0 ∈ U if and only if
fj(z0) = −1 for some j. The multiplicity of the zero at z0 is the sum of the multiplicities of the zeros of 1 + fj
at z0.

Proof: Let a compact K ⊂ U be given. Since
∑
|fj | converges uniformly on K, the partial sums are uniformly

bounded on K by some constant C. Therefore, by Proposition 7.4 the partial products

PN (z) B
N∏
j=1

(1 + |fj(z)|)

are uniformly bounded on K by eC. Let 0 < ϸ < 1 be given, and choose L sufficiently large so that for
M ≥ N ≥ L one has

M∑
j=N

|fj(z)| < ϸ, z ∈ K.

One then has that

|PM (z) − PN (z)| ≤ |PN (z)|

∣∣∣∣∣∣∣
M∏

j=N+1

(1 + |fj(z)|) − 1

∣∣∣∣∣∣∣
≤ |PN (z)|

∣∣∣∣∣∣∣exp

 M∑
j=N+1

|fj(z)|

 − 1

∣∣∣∣∣∣∣
≤ eC(eϸ − 1).

Letting ϸ → 0+ yields that the sequence {PN (z)} is uniformly Cauchy on K. Hence, by Lemma 7.7 the
sequence

{

N∏
j=1

(1 + fj(z))}

is uniformly Cauchy on K, and converges to a holomorphic function f (z).
Suppose that f (z0) = 0 for some z0 ∈ K. By definition, there exists an N0 such that

FN0 (z) B lim
N→+∞

N∏
j=N0+1

(1 + fj(z)) , 0, z = z0.

Furthermore, this FN0 (z) is holomorphic, and hence nonvanishing in D(z0, r) for some r > 0. Since

f (z) =

N0∏
j=1

(1 + fj(z)) · FN0 (z),

and the second factor is nonzero on D(z0, r), the statement about the zeros of f (z) and their multiplicities
follows by inspection of the first factor. �

Remark 7.11. The statement that f (z0) = 0 if and only if fj(z0) = −1 is a primary reason that one restricts
the definition of the convergence of infinite products as we do.

7.2. The Weierstrass factorization theorem

Let {aj} ⊂ C\{0} have no finite accumulation point, and suppose that

∞∑
j=1

1
|aj |

< ∞.
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As a consequence of Theorem 7.10 one has that the function

f (z) B
∞∏
j=1

(
1 −

z

aj

)
is entire and satisfies f (z) = 0 if and only if z = aj for some j ∈ N. However, if the summability constraint is
not satisfied, then it is not clear that f (z) as defined above is entire. In general, this constraint is too strict.
Definition 7.12. For p ∈ N0 the Weierstrass elementary factors are given by

E0(z) B 1 − z, Ep(z) B E0(z) exp

 p∑
j=1

zj

j

 .
It is clear that Ep(z) is entire for each p ∈ N0, and that Ep(z/a) = 0 if and only if z = a. Furthermore, if

z ∈ D(0,1) one has that
lim
p→∞

Ep(z) = 1.

The next result specifies the rate of convergence.
Proposition 7.13. If z ∈ D(0,1), then

|1 − Ep(z)| ≤ |z|p+1.

Proof: See [8, Lemma 8.2.1]. �

Lemma 7.14. Let {aj} ⊂ C\{0} have no finite accumulation point. Then

F (z) B
∞∏
n=1

En−1

(
z

an

)
is entire; furthermore, the zeros of F are precisely the points {aj}, counted with multiplicity.

Proof: Let r > 0 be fixed. There is a N ∈ N such that for n ≥ N one has |an | > 2r. Thus, for n ≥ N and
z ∈ D(0, r) one has from Proposition 7.13 that∣∣∣∣∣∣En−1

(
z

an

)
− 1

∣∣∣∣∣∣ ≤
∣∣∣∣∣ zan

∣∣∣∣∣n ≤ ∣∣∣∣∣ ran
∣∣∣∣∣n ≤ 2−n ,

which implies that
∞∑
n=N

∣∣∣∣∣∣En−1

(
z

an

)
− 1

∣∣∣∣∣∣ < ∞.
The series then converges uniformly on D(0, r) by the Weierstrass M-test, so by Theorem 7.10 the infinite
product

F (z) =

∞∏
n=1

(
1 +

(
En−1

(
z

an

)
− 1

))
converges uniformly on D(0, r). Since r > 0 is arbitrary, F (z) is entire. The statement about the zeros follows
immediately from Theorem 7.10. �

Remark 7.15. If one assumes that there exists {pj} ⊂ N such that for each r ∈ R+,

∞∑
j=1

(
r

|aj |

)pj+1

< ∞,

then the result of Lemma 7.14 holds for

F (z) B
∞∏
n=1

Epn

(
z

an

)
[8, Theorem 8.2.2].



Complex Variable Class Notes 60

Corollary 7.16. Let {aj} ⊂ C\{0} have no finite accumulation point. There exists an entire function f with a
zero of order k at z = 0 and all other zeros precisely equal to {aj}.

Proof: By Lemma 7.14 the entire function

zk
∞∏
n=1

En−1

(
z

an

)
is the desired function. �

Remark 7.17. Note that by the discussion at the beginning of this section it may not be necessary to use
the Weierstrass elementary factors in order to construct the desired entire function.
Theorem 7.18 (Weierstrass factorization theorem). Let f : C 7→ C be entire. Suppose that f has a zero of
order k at z = 0, and let {aj} ⊂ C\{0} be the other zeros of f . There exists an entire function g such that

f (z) = eg(z)zk
∞∏
n=1

En−1

(
z

an

)
.

Proof: Set

h(z) B zk
∞∏
n=1

En−1

(
z

an

)
.

From Corollary 7.16 one has that h has the same zeros as f , counting multiplicities, so that the function
f/h is entire and nonvanishing. Thus, by Lemma 6.21 there exists an entire g such that

f (z)
h(z)

= eg(z),

which proves the theorem. �

At this point, there is little understanding as to how one can derive a product expansion for a given
function. For example, by following the argument in the proof of Theorem 7.18 one has that

sin πz = eg(z)z
∞∏
n=1

(
1 −

z2

n2

)
.

Upon using the fact that

lim
z→0

sin πz
z

= π,

one can deduce that g(0) = ln π. What is g(z) for z ∈ C\{0}?
Suppose that

F (z) B
∞∏
n=1

(1 + an(z)).

By considering the partial product expansion and using the continuity of ln(z), it can be shown that at all
points for which F (z) , 0,

lnF (z) =

∞∑
n=1

ln(1 + an(z)).

A formal term-by-term differentiation then yields

F ′(z)
F (z)

=

∞∑
n=1

a′n(z)
1 + an(z)

.

This formal argument can be made rigorous [10, Theorem 8.4].
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Now let us revisit the previous example. By considering the function

f (ξ ) B
π cot πξ
z2 − ξ 2 ,

and the contour comprising the boundary of the rectangular domain

DN B {z ∈ C : |Re z| < N +
1
2
, | Im z| < N},

one can show that

π cot πz = lim
N→+∞

1
2πi

∮
∂DN

f (ξ ) dξ

=
1
z

+

∞∑
n=1

2z
z2 − n2

=
1

1 + (z − 1)
+

∞∑
n=1

−2z/n2

1 − z2/n2 .

(see [10, Example 6.2.2] for the details). Since

π cot πz =
d

dz
ln(α sin πz)

for any α ∈ C\{0}, from the above argument one has that

α sin πz = z
∞∏
n=1

(
1 −

z2

n2

)
.

Dividing both sides by z and taking the limit at z = 0 yields that α = 1/π; hence, we have the result

sin πz = πz
∞∏
n=1

(
1 −

z2

n2

)
.

Remark 7.19. Following [10, Problem 6.8.8], one gets that

cos πz =

∞∏
n=1

(
1 −

z2

(n − 1/2)2

)
.

7.3. The theorems of Weierstrass and Mittag-Leffler: interpolation problems

We now consider the question as to what happens if there is a finite accumulation point for the zeros. If
the function is to be nontrivial, then these accumulation points must lie on the boundary of the domain of
f .
Theorem 7.20. [Weierstrass] Let U ⊂ C be open, and let {aj} ⊂ U have no accumulation point in U . There
exists a holomorphic f : U 7→ C whose zero set is precisely {aj}.

Proof: If the sequence is finite, then the desired function is a polynomial. Hence, it may be assumed that
the sequence is infinite.

Set Ĉ B C∪ {∞}, and for a given p ∈ U\{aj} apply the linear fractional transformation z 7→ 1/(z −p). This
yields ∞ ∈ U with ∂U ⊂ Ĉ\{∞}, so that after the transformation:

(a) U ⊂ Ĉ with U , Ĉ

(b) Ĉ\U is compact



Complex Variable Class Notes 62

(c) {aj} ∪ {∞} ⊂ U

(d) {aj} ∩ {∞} = ∅.

Thus, by hypothesis the accumulation points are finite and contained solely in ∂U , so that any compact
subset of U contains only finitely many aj ’s. As a consequence of (b), for each aj there exists âj ∈ ∂U which
is closest to aj; thus, for dj B |aj − âj | one has dj → 0 as j → +∞. Let K ⊂ U be compact. There exists a
δ > 0 such that

|z −w| ≥ δ, z ∈ K, w ∈ Ĉ\U,

which implies that |z− âj | ≥ δ for all z ∈ K and all j. There is then a j0 such that for j > j0, dj < |z− âj |/2, i.e.,∣∣∣∣∣∣aj − âjz − âj

∣∣∣∣∣∣ < 1
2
.

As a consequence of Proposition 7.13 (with p = j) and Theorem 7.10 one has that

f (z) B
∞∏
j=1

Ej

(
aj − âj
z − âj

)
(7.1)

converges uniformly on K. Since K ⊂ U is arbitrary, f is holomorphic on U and has the desired properties.
It is an exercise to check what happens at the point ∞. �

As a consequence of Theorem 7.20, one can now completely classify meromorphic functions m : U 7→ C
(recall Definition 4.26). Recall Lemma 4.32 in the case that U = C.
Corollary 7.21. Let m : U 7→ C be meromorphic. There exists holomorphic f, g : U 7→ C such that

m(z) =
f (z)
g(z)

.

Proof: Let {aj} ⊂ U represent the poles of m, counting multiplicity. By Theorem 7.20 there exists a holo-
morphic g : U 7→ C whose zero set is precisely {aj}. Since f (z) B m(z)g(z) is holomorphic on U , one has the
desired result. �

The question to now be considered is: what happens to f as z → ∂U? Can it be holomorphically extended
to a Û with U ⊂ Û?
Definition 7.22. Let U ⊂ C be open, and let f : U 7→ C be holomorphic. For P ∈ ∂U, f is said to be regular
at P if there is an r > 0 and a holomorphic f̃ : D(P, r) 7→ C such that

f |D(P,r)∩U = f̃ |D(P,r)∩U .

When considering equation (7.1), first note f (z) has a singularity at each âj. Now, it can be shown that
if z ∈ ∂U is such that |z − âj | > δ > 0 for all j ∈ N, then f (z) is holomorphic at z. However, such a δ may not
exist. For example, set U = D(0,1), and for each n ∈ N place n zeros on ∂D(0,1 − 1/n) via the prescription

anj B
(
1 −

1
n

)
ei2πj/n , j = 0, . . . , n − 1.

One then has that
ânj = ei2πj/n , j = 0, . . . , n − 1,

so that {ânj } ⊂ ∂D(0,1) is a countable dense set. While it will not be done so herein, this example can be
generalized to arbitrary open sets U ⊂ C.
Corollary 7.23. Let U ⊂ C be open and connected with U , C. There is a holomorphic f : U 7→ C such
that no P ∈ ∂U is regular for f .

Proof: By [8, Lemma 8.3.2] there exists a countably infinite A B {aj} ⊂ U such that A has no accumulation
point in U , and every P ∈ ∂U is an accumulation point of A. Applying Weierstrass theorem with this set A
yields a holomorphic f : U 7→ C whose zero set is precisely A. Suppose that there is a point P ∈ ∂U which is
regular. Since f̃ : D(P, r) 7→ C is holomorphic with zeros accumulating at P, one has that f̃ ≡ 0. This then
implies that f ≡ 0 on D(P, r), which is a contradiction. �
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Recall that a meromorphic function has an associated Laurent series about each given point. The
question to be answered next is: given the principal part of a Laurent series at a collection of points, is there
a meromorphic function with the given principal parts?
Theorem 7.24. [Mittag-Leffler theorem] Let {αj} ⊂ C\{0} be such that |αj | < |αj+1| for j ∈ N with |αj | → +∞.
Set

sj(z) B
−1∑

`=−p(j)

a j`(z − αj)
`.

There is a meromorphic m : C 7→ C whose principal part at αj is sj(z), and which has no other poles.

Proof: If the sequence is finite, the desired function is found by adding the sj ’s; thus, assume that the
sequence is infinite. For each j ∈ N one has the Taylor expansion

sj(z) =

∞∑
k=0

a jkz
k , z ∈ D(0, |αj |),

which converges uniformly on
Dj B D(0, |αj |/2).

Let {ϸk} ⊂ R+ be such that
∞∑
k=1

ϸk < ∞,

and choose integers `j such that for j ∈ N,

|sj(z) −
`j∑
k=0

a jkz
k | < ϸj, z ∈ Dj. (7.2)

Set

Pj(z) B −
`j∑
k=0

a jkz
k , j ∈ N.

For a given R ∈ R+, set
DR B D(0, R),

and let N ∈ N be the least integer such that |αj | > 2R for j > N . Set

fN (z) B
∞∑

j=N+1

[sj(z) + Pj(z)]. (7.3)

Since DR ⊂ Dj for all j > N , and since DR contains none of the points αN+1, αN+2, . . . , as a consequence of
equation (7.2) one has that

|sj(z) + Pj(z)| < ϸj, z ∈ DR.

Thus, by the Weierstrass M-test the series in equation (7.3) is uniformly convergent, so that fN (z) is holo-
morphic on DR.

Now set

f (z) B
N∑
j=1

[sj(z) + Pj(z)] + fN (z)

= gR(z) + fN (z).

(7.4)

One has that fN (z) is holomorphic on DR, whereas gR(z) is a rational function whose poles in DR are precisely
α1, . . . , αN . Furthermore, the principal part of gR(z) at each αj ∈ DR is precisely sj(z). The result now follows
upon noting that R > 0 is arbitrary. �

Remark 7.25. One has that:
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(a) this statement and proof of the Mittag-Leffler theorem can be found in [11, II.10.51]

(b) if α0 = 0, then the polynomial P0(z) can be arbitrarily defined

(c) the assumption that |αj | < |αj+1| is made for convenience only; otherwise, one must just be more
careful when discussing the set DR, and the location and number of poles therein.

Corollary 7.26. Let f : C 7→ C\{0} be a meromorphic function whose poles are given by an increasing
sequence of distinct {αj} ⊂ C, and with principal part sj(z) at αj. Then

f (z) = g(z) +

∞∑
j=1

[sj(z) + Pj(z)],

where g : C 7→ C is entire, and each Pj(z) is a polynomial.

Proof: As a consequence of equation (7.4) in the proof of Theorem 7.24, one has that there exists a mero-
morphic function φ(z) of the form

φ(z) B
∞∑
j=1

[sj(z) + Pj(z)]

which has the same poles and principal parts as f (z). Thus, g(z) B f (z) − φ(z) is entire. �

Example. Let {αj} ⊂ C\{0} be such that |αj | < |αj+1| for j ∈ N with |αj | → +∞, and let the principal part at αj
be simply

1
z − αj

, j ∈ N.

Following the proof of Theorem 7.24, set ϸj B 2−(j−1). One then has that the corresponding Pj(z) which allows
equation (7.2) to be satisfied is given by

Pj(z) B
1
αj

j−1∑
k=0

(
z

αj

)k
=

1
αj

+
z

α2
j

+ · · · +
zj−1

αjj
.

As a consequence of Corollary 7.26 the meromorphic function with the given principal part is given by

f (z) = g(z) +

∞∑
j=1

 1
z − αj

+
1
αj

+
z

α2
j

+ · · · +
zj−1

αjj

 ,
where g(z) is entire.
Corollary 7.27. Let {αj} ⊂ C\{0} be such that |αj | < |αj+1| for j ∈ N with |αj | → +∞. Let {�j} ⊂ C be arbitrary.
There exists an entire function f (z) such that

f (αj) = �j, j ∈ N.

Proof: As a consequence of Theorem 7.18 one has that

g(z) B
∞∏
n=1

En−1

(
z

αn

)
is entire with simple zeros at αj. As a consequence of Theorem 7.24 there exists a meromorphic function
φ(z) with simple poles at αj and corresponding principal parts

�j/g′(αj)
z − αj

, j ∈ N.

Note that this implies that

lim
z→αj

φ(z)(z − αj) =
�j

g′(αj)
.
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The function
f (z) B g(z)φ(z)

is clearly entire, and moreover satisfies

f (αj) = lim
z→αj

g(z)φ(z)

= lim
z→αj

g(z) − g(αj)
z − αj

φ(z)(z − αj)

= g′(αj)
�j

g′(αj)
. �

It is natural to wonder if Corollary 7.27 can be generalized to cover the case of a finite Taylor expansion
at each point αj. In other words, is Theorem 7.24 still valid when “singular part" is replace by “finite Laurent
expansion"? The answer is yes, and all that is required to prove it is the proper generalization of the proof
of Corollary 7.27 [8, Lemma 8.3.7].
Theorem 7.28. Let {αj} ⊂ C\{0} be such that |αj | < |αj+1| for j ∈ N with |αj | → +∞. Set

sj(z) B
N(j)∑

`=−M(j)

a j`(z − αj)
`,

with M(j), N(j) ≥ 0. There is a meromorphicm : C 7→ C, holomorphic on C\{αj}, such that the `-th coefficient
of m(z) at αj is a j` for −M(j) ≤ ` ≤ N(j).

Proof: By Theorem 7.18 there is a holomorphic h : C 7→ C with a zero of order M(j) at αj for each j and no
others. Set s̃j(z) B h(z)sj(z), and note that s̃j is holomorphic at αj. Let ˜̃sj denote the Taylor polynomial of
degree N(j) + M(j) associated with s̃j. Again by Theorem 7.18 there exists a holomorphic g : C 7→ C with
zeros of order N(j) + M(j) + 1 at each αj, and no others. By [8, Lemma 8.3.7] there is a Laurent polynomial
vj(z) with a pole of order N(j) +M(j) + 1 at αj such that for each j,

g(z)vj(z) = ˜̃sj(z) + higher order terms.

Now, by Theorem 7.24 there exists a meromorphic function k : C 7→ C with principal part vj(z) at αj for
each j. But g(z)k(z) will have no poles, and furthermore will have an N(j) +M(j) degree Taylor polynomial at
αj which is equal to s̃j(z). Hence,

m(z) B
g(z)k(z)
h(z)

satisfies the conclusion of the theorem. �

In the event that the poles have an accumulation point in C, one can no longer apply the proof of
Theorem 7.24; furthermore, the subsequent results are no longer valid. However, there is still a definitive
result.
Theorem 7.29. [Mittag-Leffler theorem] Let U ⊂ C be open, and let {αj} ⊂ U have no accumulation points
in U . Set

sj(z) B
−1∑

`=−p(j)

a j`(z − αj)
`.

There is a meromorphic m : U 7→ C whose principal part at αj is sj(z), and which has no other poles.

Proof: Assume that U has the same properties as in the proof of Theorem 7.20. For each j let α̂j ∈ Ĉ\U be
the nearest point to αj, and set dj B |α̂j − αj |.

As a consequence of the pole-pushing lemma [8, Lemma 8.3.5], for each j there exists a finite Laurent
expansion tj(z) in powers of (z − α̂j) such that

|sj(z) − tj(z)| <
1
2j
, z ∈ Ĉ\D(α̂j,2dj).
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The claim is that

m(z) B
+∞∑
j=1

(sj(z) − tj(z))

is the desired meromorphic function. Note that only the terms sj(z) contribute the poles.
Fix D(a, r) ⊂ U\{αj}. Since dj → 0, choose J sufficiently large so that j ≥ J implies that

2dj < dist
(
D(a, r), Ĉ\U

)
.

Thus, for j ≥ J one has that D(a, r) ⊂ U\D(α̂j,2dj), so that

|sj(z) − tj(z)| <
1
2j
, z ∈ D(a, r).

The Weierstrass M-test then yields uniform convergence on D(a, r). Since D(a, r) is arbitrary, the series
converges uniformly on compact subsets of U\{αj}, which yields that m(z) is the desired meromorphic
function. �

Remark 7.30. The pole-pushing lemma essentially says that the principal part of a Laurent expansion
expanded about z = α can be uniformly approximated by a truncation of a Laurent expansion expanded
about z = � on Ĉ\D(�, r), where r > |α − �|.

Combining Weierstrass theorem with the Mittag-Leffler theorem yields the following approximation the-
orem.
Theorem 7.31. Let U ⊂ C be open, and let {αj} ⊂ U have no accumulation points in U . Set

sj(z) B
N(j)∑

`=−M(j)

a j`(z − αj)
`,

withM(j), N(j) ≥ 0. There is a meromorphicm : U 7→ C, holomorphic on U\{αj}, such that the `-th coefficient
of m(z) at αj is a j` for −M(j) ≤ ` ≤ N(j).

Proof: The proof is the same as that for Theorem 7.28. All that must be done is follow the same line of
reasoning, and instead appeal to the results of Theorem 7.20 and Theorem 7.29. �

8. Applications of Infinite Sums and Products

It has been seen that the zeros of a holomorphic function can be arbitrarily placed. The converse
question will now be considered. Does the behavior of the holomorphic function near the boundary of its
domain of existence control the number and placement of the zeros? For example, the higher the order of a
polynomial, the greater the number of zeros, and the faster the growth rate as |z| → ∞. What if the growth
rate is exponential?

8.1. Jensen’s formula and an introduction to Blaschke products

Definition 8.1. If a ∈ D(0,1), the Blaschke factor is given by

Ba(z) B
z − a

1 − āz
.

Note that a Blaschke factor is actually a Mĺobius transformation. It is known that Ba(z) is a conformal
self-map of D(0,1), with |Ba(z)| = 1 for z ∈ ∂D(0,1). Furthermore, since the pole is located at z = 1/ā, one
has that Ba(z) is holomorphic on a neighborhood of D(0,1).
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Suppose that g B u + iv is nonzero and holomorphic on D(0, r). It can be easily checked that

ln |g| =
1
2

ln(u2 + v2)

is harmonic on D(0, r), i.e., ∆ ln |g| = 0. As a consequence one has the mean value property [8, Theo-
rem 7.2.5], i.e.,

ln |g(0)| =
1

2π

∫ 2π

0
ln |g(reiθ)| dθ. (8.1)

This result follows immediately from the Cauchy integral formula. Equation (8.1) will be useful in the
following theorem, which can be considered to be a generalization.
Theorem 8.2. [Jensen’s formula] Let f be holomorphic on a neighborhood of D(0, r), and suppose that
f (0) , 0. Let a1, . . . , ak ∈ D(0, r) be the zeros of f . Then

ln |f (0)| +
k∑
j=1

ln

∣∣∣∣∣∣ raj
∣∣∣∣∣∣ =

1
2π

∫ 2π

0
ln |f (reiθ)| dθ.

Remark 8.3. Note that this implies

ln |f (0)| ≤
1

2π

∫ 2π

0
ln |f (reiθ)| dθ,

(Jensen’s inequality ), with equality if and only if f has no zeros in D(0, r).

Proof: For j = 1, . . . , k consider

fj(z) B Baj/r
(z
r

)
.

One has that each fj is holomorphic on D(0, r) with a simple zero only at z = aj; furthermore, |fj(z)| = 1 for
z ∈ ∂D(0, r). Thus, the function

g(z) B
f (z)∏k
j=1 fj(z)

is holomorphic and nonzero on D(0, r). It is clear that

ln |fj(0)| = ln
∣∣∣∣∣ajr

∣∣∣∣∣ ,
and that

ln |fj(eiθ)| = 0;

hence, upon applying equation (8.1) to g(z) and simplifying one gets the desired result. �

The following theorem details the placement of the zeros of a bounded holomorphic function. In partic-
ular, the zeros must concentrate on the boundary sufficiently quickly.
Theorem 8.4. Let f : D(0,1) 7→ C be bounded and holomorphic, and let {aj} ⊂ D(0,1) be the zeros of f . One
then has

∞∑
j=1

(1 − |aj |) < ∞. (8.2)

Proof: First suppose that f (0) , 0. If f (0) = 0, apply the below argument to g(z) B f (z)/zm , where m is
the order of the zero. There exists numbers 0 < r � 1 such that |aj | , r for all j. Given such an r, let n(r)
represent the number of zeros in D(0, r). By Theorem 8.2 one has that

ln |f (0)| +
n(r)∑
j=1

ln

∣∣∣∣∣∣ raj
∣∣∣∣∣∣ =

1
2π

∫ 2π

0
ln |f (reiθ)| dθ.
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Since |f (z)| ≤ M , upon letting r → 1− one sees that

−

∞∑
j=1

ln |aj | =
∞∑
j=1

ln
1
|aj |
≤ lnM − ln |f (0)|.

Since

− lnα = − ln(1 − (1 − α)) =

∞∑
n=1

(1 − α)n

n

for any α ∈ (0,1), one gets that − lnα > 1 − α. Hence,
∞∑
j=1

(1 − |aj |) ≤ lnM − ln |f (0)|,

which proves the result. �

Remark 8.5. There is an obvious modification of the theorem in the event that f : D(0, r) 7→ C is bounded
and holomorphic.
Definition 8.6. A Blaschke product if of the form

B(z) B zm
 ∞∏
j=1

−
āj
|aj |
Baj (z)

 ,
where {aj} ⊂ D(0,1).

Note that |Baj (z)| ≤ 1 on D(0,1), so that |B(z)| ≤ 1 on D(0,1). In order to determine if the Blaschke
product is convergent, one needs to study the convergence of the sum

∞∑
j=1

∣∣∣∣∣∣1 +
āj
|aj |
Baj (z)

∣∣∣∣∣∣
on D(0, r) for any 0 < r < 1. Assume that equation (8.2) holds. A routine calculation shows that∣∣∣∣∣∣1 +

āj
|aj |
Baj (z)

∣∣∣∣∣∣ ≤ (1 + r)(1 − |aj |)
|aj |(1 − r)

≤ 2
1 + r

1 − r
(1 − |aj |).

The second inequality holds for j > J0, where |aj | ≥ 1/2 for j > J0. Thus, by the Weierstrass M-test the series
converges uniformly on D(0, r). Under the assumption of equation (8.2) one then has that the Blaschke
product is convergent on D(0,1) to a bounded holomorphic function B(z) whose zeros are precisely at
z = aj.
Lemma 8.7. Suppose that f : D(0,1) 7→ C is bounded with zeros at {aj} ⊂ D(0,1). Then

f (z) = F (z)B(z),

where F : D(0,1) 7→ C\{0} is bounded. Furthermore,

sup
z∈∂D(0,1)

|f (z)| = sup
z∈∂D(0,1)

|F (z)|.

Proof: If one defines F (z) B f (z)/B(z), then it is clear that F is holomorphic and nonzero on D(0,1). Upon
applying the maximum modulus theorem (Corollary 5.18), and using the facts that

|z1z2| = |z1| |z2|,

and |B(z)| ≡ 1 for z ∈ ∂D(0,1), one immediately gets the second result. �

In conclusion, one can then say that f : D(0,1) 7→ C is bounded with zeros at {aj} ⊂ D(0,1) if and only if
equation (8.2) holds. Furthermore, up to a nonzero multiplicative factor the function is a Blaschke product.
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8.2. The Hadamard Gap Theorem

The Blaschke product B(z) given in Definition 8.6 is bounded and holomorphic on D(0,1). It is natural to
then wonder if it can be holomorphically extended onto D(0,1). Of course, it depends upon the distribution
of the zeros near ∂D(0,1); in particular, is the limit of the zeros dense on ∂D(0,1) (recall the discussion
before Corollary 7.23)? Now let us construct a holomorphic function on D(0,1) for which no z ∈ ∂D(0,1) is
regular. This will be accomplished without considering the placement of the zeros. Consider

f (z) B
∞∑
n=1

z2n , z ∈ D(0,1).

The sum is clearly uniformly convergent, and hence f (z) is holomorphic. For a given N ∈ N choose w ∈
∂D(0,1) such that w2N = 1, and let r ∈ (0,1). One has that

f (rw) =

N−1∑
n=1

(rw)2n +

∞∑
n=N

(rw)2n

=

N−1∑
n=1

(rw)2n +

∞∑
n=N

r2n ,

so that
lim
r→1−
|f (rw)| = +∞.

Since the set of points w ∈ ∂D(0,1) is dense, one then immediately gets that no z ∈ ∂D(0,1) is regular. This
example is a particular case of the following theorem:
Theorem 8.8. [Ostrowski-Hadamard] Let 0 < p1 < p2 < · · · ∈ N satisfy

pj+1

pj
> λ > 1.

If

f (z) B
∞∑
j=1

ajz
pj

is holomorphic on D(0,1), then no point of ∂D(0,1) is regular.

Proof: See [8, Theorem 9.2.1]. �

8.3. Entire functions of finite order

Throughout this subsection it will be assumed that f : C 7→ C is entire. It will also be assumed that
the zeros {aj} are ordered so that |a1| ≤ |a2| ≤ · · · . A primary purposes of this subsection is to present a
refinement of the Weierstrass factorization theorem (Theorem 7.18).
Definition 8.9. f is of finite order if there exist a, r ∈ R+ such that

|f (z)| ≤ exp(|z|a), |z| > r.

The order of f is given by
λ B inf{a ∈ R+ : |f (z)| ≤ exp(|z|a), |z| > r}.

Note that a polynomial has order zero, whereas sin z has order one. The aim is to determine the manner
in which the order of f dictates the rate at which the zeros tend towards infinity. In all that follows it will
typically be assumed that f (0) = 1. This can be done without loss of generality, for the simple scaling

f (z) 7→ c
f (z)
zm

, lim
z→0

c
f (z)
zm

= 1,

allows f to satisfy the property without changing the location of any of the other zeros.
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Definition 8.10. Set n(r) to be the number of zeros of f in D(0, r), and set

M(r) B max
z∈∂D(0,r)

|f (z)|.

Lemma 8.11. If f (0) = 1, then

n(r) ≤
lnM(2r)

ln 2
.

Proof: Let a1, . . . , an(2r) ∈ D(0,2r) denote the zeros. Since they are ordered, they satisfy |a1| ≤ |a2| ≤ · · · , so
that a1, . . . , an(r) ∈ D(0, r). Further suppose that no zeros lie on ∂D(0,2r). Using the fact that f (0) = 1 and
applying Theorem 8.2 yields

n(2r)∑
k=1

ln
(

2r
|ak |

)
=

1
2π

∫ 2π

0
ln |f (2reiθ)| dθ

≤ lnM(2r).

Since
n(r)∑
k=1

ln 2 ≤
n(r)∑
k=1

ln
(

2r
|ak |

)
≤

n(2r)∑
k=1

ln
(

2r
|ak |

)
,

the result is now proven. �

Now suppose that f has finite order, so that

M(r) ≤ exp(rλ+ϸ/2)

for any ϸ > 0 and r sufficiently large. By Lemma 8.11 this implies that

n(r) ≤
(2r)λ+ϸ/2

ln 2
,

which, upon multiplying both sides by r−(λ+ϸ) and taking the limit r → +∞, in turn implies that

n(r) ≤ rλ+ϸ

for r sufficiently large. Since {a1, . . . , aj} ⊂ D(0, |aj |), for j sufficiently large and δ > 0 arbitrarily small one
has that

j ≤ n(|aj | + δ) ≤ |aj |λ+ϸ.

Letting δ → 0+ then yields that for any µ > ϸ,

|aj |
−(λ+µ) ≤ j−(λ+µ)/(λ+ϸ).

Thus,
∞∑
j=1

|aj |
−(λ+µ) < ∞

for any µ > 0 (since ϸ > 0 is arbitrarily small). The following theorem has now been proved.

Theorem 8.12. If f is of finite order λ and satisfies f (0) = 1, then the zeros a1, a2, . . . satisfy

∞∑
j=1

|aj |
−(λ+µ) < ∞

for any µ > 0.
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Let [λ] represent the largest integer less than or equal to λ. As a consequence of Theorem 8.12 and
Remark 7.15 one has that

P(z) B
∞∏
j=1

E[λ]

(
z

aj

)
(8.3)

converges uniformly on compact subsets of C. Furthermore, the Weierstrass factorization theorem (Theo-
rem 7.18) states that for a function f of finite order λ one has

f (z) = eg(z)zmP(z) (8.4)

for some entire function g(z). The next question to answer: what are the properties of g(z)? The fact that
it is entire implies that it has a convergent Taylor series. Does the order of f imply that the series is finite?
Assuming that f (0) = 1 and applying logarithmic differentiation to equation (8.4) yields

f ′(z)
f (z)

= g′(z) +
P ′(z)
P(z)

; (8.5)

hence, if one better understands the logarithmic differentiation of f and P, one will better understand the
behavior of g. The following technical lemma, which is proven in [8, Lemmas 9.3.3,9.3.4], is first needed.
Lemma 8.13. Let f be of finite order λ with f (0) = 1, and let p ∈ N satisfy p > λ − 1. Then for any fixed
z ∈ C,

lim
r→+∞

n(r)∑
k=1

āp+1
k (r2 − ākz)−(p+1) = 0

lim
r→+∞

∫ 2π

0
2reiθ(reiθ − z)−(p+2) ln |f (reiθ)| dθ = 0.

Let z ∈ D(0,2r). As a consequence of the Poisson-Jensen formula [8, Problem 9.1] one has that

ln |f (z)| = −
n(r)∑
j=1

ln

∣∣∣∣∣∣ r2 − ājz

r(z − aj)

∣∣∣∣∣∣ +
1

2π

∫ 2π

0
Re

(
reiθ + z

reiθ − z

)
ln |f (reiθ)| dθ.

Logarithmic differentiation in z then yields

f ′(z)
f (z)

= −

n(r)∑
j=1

(aj − z)−1 +

n(r)∑
j=1

āj(r2 − ājz)−1 +
1

2π

∫ 2π

0
2reiθ(reiθ − z)−2 ln |f (reiθ)| dθ.

Let p ∈ N be such that p > λ−1. Differentiate both sides of the above p times. Upon doing so, take the limit
r → +∞ and use the result of Lemma 8.13 to see that

dp

dzp
f ′(z)
f (z)

= −p!
∞∑
j=1

(aj − z)−(p+1). (8.6)

A similar argument yields that for P(z) defined in equation (8.3),

dp

dzp
P ′(z)
P(z)

= −p!
∞∑
j=1

(aj − z)−(p+1). (8.7)

Now consider equation (8.5). Differentiating p times, and using the results of equation (8.6) and equa-
tion (8.7) yields

dp+1

dzp+1 g(z) ≡ 0;

hence, g(z) is a polynomial of degree at most p. Note that one can have λ−1 < p ≤ λ in the above argument.
The following theorem has now been proven.
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Theorem 8.14. Suppose that f is of finite order λ with f (0) = 1. The Weierstrass canonical product

f (z) = eg(z)P(z)

has the property that g is a polynomial of degree at most λ.
Remark 8.15. One has that:

(a) As noted above, the above theorem will apply if f (0) = 0. Simply set f̃ (z) = cf (z)/zm , where c ∈ C
is chosen so that f̃ (0) = 1, and apply the theorem to f̃ to eventually get

f (z) =
1
c
zmeg(z)P(z),

where again g is a polynomial of degree at most λ.

(b) The synthesis of Theorem 8.12 and Theorem 8.14 is known as that Hadamard factorization theo-
rem.

Corollary 8.16. Suppose that f is of finite order λ with λ < N. If α ∈ C lies in the image of f , then there
exist infinitely many values zj ∈ C such that f (zj) = α.

Proof: Without loss of generality assume that α = 0, and suppose that the assertion is false. One then has
that

f −1(0) = {a1, . . . , aN }, N ∈ N,

so that by Theorem 8.14

f (z) = eg(z)P(z), P(z) B
N∏
j=1

(z − aj),

where g(z) is a polynomial of degree not exceeding λ. It is clear that the order of eg(z) is q ∈ N0, where q is
the degree of g. Let ϸ > 0 be given. It is clear that for |z| sufficiently large,

|eg(z)| =
|f (z)|
|P(z)|

≤ e|z|
λ+ϸ ;

similarly, |eg(z)| ≥ e|z|
λ−ϸ. Hence, since ϸ > 0 is arbitrary, the order of eg(z) is λ. Thus, λ = q ∈ N0, which is a

contradiction. �

Corollary 8.17. Suppose that f is nonconstant and is of finite order λ. The image of f contains all complex
numbers except possibly one.

Proof: Suppose that the image of f omits α1 and α2. Set h(z) B f (z) − α1. Since h(z) , 0, one has that
h(z) = eg(z) for some polynomial g(z). Since there exists no z such that h(z) = α2 − α1, one has that
g(z) omits the value ln(α2 − α1). Thus, the polynomial g(z) − ln(α2 − α1) never vanishes, which violates the
fundamental theorem of algebra unless g is constant. This is possible only if f is constant, which contradicts
the hypothesis. �

To paraphrase the above results, one can state that a nonconstant entire function of nonintegral finite
order will achieve every value except possibly one an infinite number of times. As we will see in the next
section, this is a consequence of Picard’s little theorem.

8.4. Picard’s theorems

The primary purposes of this subsection is to remove the restriction that λ < N in Corollary 8.16, and to
strengthen the result of Corollary 8.17. We start with a preliminary result, which follows immediately from
Lemma 6.21.
Definition 8.18. If f : U 7→ C is holomorphic, then we say that A0 ∈ C is an A-point if there exists a z0 ∈ U
such that f (z0) = A0.
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Lemma 8.19. Suppose that f : C 7→ C is entire, and further suppose that f has no A0-points. Then

f (z) = A0 + eg(z),

where g : C 7→ C is entire.
Now suppose that in addition to having no A0-points, the function f has finite order λ. As a consequence

of Theorem 8.14 one has that
f (z) − A0 = eP(z),

where P(z) is a polynomial of degree n ≤ λ. Since the order of eP(z) is n (see the proof of Corollary 8.16), and
since f (z) and f (z) − A0 have the same order, the following result has now been proven.
Lemma 8.20. Suppose that f : C 7→ C is entire, and further suppose that f has no A0-points. If f has
finite order λ, then λ = n ∈ N0, and

f (z) = A0 + eP(z),

where P(z) is a polynomial of degree n.
Remark 8.21. Note that as a consequence of Corollary 8.17 one has that the image of f (z) is C\{A0}.

Now suppose that z1, . . . , zm ∈ C are distinct A0-points, where zj is of order kj ∈ N, i.e., f (z) − A0 has a
zero of order kj at zj. Upon applying Lemma 8.19 to the function

F (z) B
f (z) − A0

(z − z1)k1 . . . (z − zm)km
,

one has that

f (z) = A0 + eg(z)
m∏
j=1

(z − zj)kj . (8.8)

If one further assumes that f (z) has finite order λ, then upon applying the proof of Theorem 8.14 to
equation (8.8) one sees that g(z) = P(z), where P(z) is a polynomial of degree n. Finally, as in the discussion
preceding Lemma 8.20, one can conclude that λ = n.
Lemma 8.22. Suppose that f : C 7→ C is entire, and further suppose that z1, . . . , zm ∈ C are distinct
A0-points of order kj ∈ N. If f has finite order λ, then λ = n ∈ N0, and

f (z) = A0 + eP(z)
m∏
j=1

(z − zj)kj ,

where P(z) is a polynomial of degree n.
Remark 8.23. As a consequence of Corollary 8.17 and Lemma 8.22, one has that if f has order λ < N, then
its image is all of C.

8.4.1. Picard’s little theorem

We are now ready to prove Picard’s little theorem. Let f (z) be an entire function of finite order λ. Note
that if λ = 0, then f (z) is a polynomial, and hence f (z) has finitely many A-points for any A ∈ C. As a
consequence, assume that λ > 0. Recall the results of Corollary 8.16 and Corollary 8.17. If λ < N, then
there exists at most one point A0 ∈ C that is not an A-point for f . Furthermore, for each A , A0 there exists
an infinite number of points z ∈ C such that f (z) = A.

Now assume that A0 ∈ C is an A-point of finite order. As a consequence of Lemma 8.22, one then has
that λ ∈ N; furthermore,

f (z) = A0 + eP(z)
m∏
j=1

(z − zj)kj ,

where P(z) is a polynomial of degree λ. Suppose that there is a B0 , A0 such that f (z) has finitely many
B0-points. As a consequence of Lemma 8.22 one has that

f (z) = B0 + eQ(z)
n∏
j=1

(z − ζj)`j ,
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where Q(z) is a polynomial of degree λ. Upon setting

p(z) B
m∏
j=1

(z − zj)kj , q(z) B
n∏
j=1

(z − ζj)`j , D B B0 − A0,

one then has that
p(z)eP(z) − q(z)eQ(z) ≡ D. (8.9)

Differentiating equation (8.9) yields

[p′(z) + p(z)P ′(z)]eP(z) − [q′(z) + q(z)Q′(z)]eQ(z) ≡ 0. (8.10)

If
p′(z) + p(z)P ′(z) ≡ 0, (8.11)

then
P ′(z) ≡ −

p′(z)
p(z)

has poles at the points z1, . . . , zm . Since P(z) is a polynomial, this implies that p(z) ≡ C, which in turn
implies that P(z) ≡ C. Since the order of f is nonzero, this last case is precluded; hence equation (8.11) is
impossible. Similarly, the relationship

q′(z) + q(z)Q′(z) ≡ 0

is impossible. Thus, equation (8.10) can be rewritten as

p′(z) + p(z)P ′(z)
q′(z) + q(z)Q′(z)

= eQ(z)−P(z).

Since the function on the right is entire and nonzero, the function on the left is a rational function with no
poles or zeros; hence, it is a constant. This implies that

Q(z) − P(z) ≡ C,

so that equation (8.9) can be rewritten as

p(z) − C1q(z) = C2e−P(z),

where C1, C2 ∈ C\{0}. Since the left-hand side is a polynomial, this again implies that P(z) ≡ C, which is
precluded.
Theorem 8.24 (Picard’s little theorem). Let f : C 7→ C be entire with a finite nonzero order λ. If λ < N, the
set of A-points is infinite for all A ∈ C. If λ ∈ N, there exists at most one point A0 ∈ C such that A0 is an
A-point of finite order. The set of A-points is infinite if A , A0.
Example. Set

f (z) B sin z − Az, A ∈ C, (8.12)

and let us find the number of roots of f (z) = 0. If A = 0, then the solutions are given by z = nπ for n ∈ Z; as
a consequence, now assume that A , 0. If one sets

g(z) B
sin z
z

= 1 −
z2

3!
+
z4

5!
+ · · · ,

then equation (8.12) is equivalent to finding the number of solutions to g(z) = A. One has that g(z) is an
entire function of order one; hence, by Theorem 8.24 there exists at most one point A0 ∈ C\{0} for which
there are only a finite number of solutions. If one considers the entire function

h(z) B g(z1/2) = 1 −
z

3!
+
z2

5!
+ · · · ,

then one has that h(z) is of order 1/2. As a consequence of Theorem 8.24 one has that no such point A0
exists when solving h(z) = A. Since every solution to h(z) = A leads to two solutions to g(z) = A, one can
finally conclude that there exists an infinite number of solutions to f (z) = 0.
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8.4.2. Picard’s big theorem

In Theorem 8.24 it is seen that entire functions of finite order achieve every value except at most one.
What can be said if the function is not of finite order?
Lemma 8.25. If f : C 7→ C is nonconstant and entire, then the range of f is dense.

Proof: Suppose that the range of f is not dense. There then exists a P ∈ C and an r > 0 such that there
exists no z ∈ C such that f (z) ∈ D(P, r). Set

g(z) B
r

f (z) − P
.

One has that g(z) is a uniformly bounded entire function; hence, by Liouville’s Theorem 3.24 g(z) is constant.
This yields a contradiction. �

The result of Lemma 8.25 is an implication of the work in Section 3.4, and could have been stated at
that time. It is a weak result in the sense that even if a set is dense, it can still be missing an uncountable
number of points. The following result is much stronger. It would have been more natural to discuss
Picard’s big theorem in Section 6.5, as the proof presented in [11, Chapter III.51] requires the use of normal
families. It is done at this time so for the reason of conciseness. The proof will not be given here, and
is left for the interested student. The following result should be contrasted with the Casorati-Weierstrass
Theorem 4.5.
Theorem 8.26 (Picard’s big theorem). Let f : D(P, r)\{P} 7→ C be holomorphic, and suppose that P is an
essential singularity. Then f (z) takes every finite value with one possible exception.

Theorem 8.26 actually implies Theorem 8.24 in the event that f (z) is of finite order. A nonconstant entire
function has either a pole or essential singularity at ∞. In the first case, the function must be a polynomial
(see Lemma 4.29), so that its range assumes all values. In the second case Theorem 8.26 then applies to
the point at ∞, and hence the result of Theorem 8.24 is automatically satisfied.

8.5. Borel’s theorem

We now wish to prove a result which is essentially the converse of the Hadamard factorization theorem.
Before we do so, however, we will need a way of characterizing convergence to infinity. Let {aj} ⊂ C\{0} be
an arbitrary sequence which converges to infinity, and consider the series

∞∑
j=1

1
|aj |α

, α ∈ R+. (8.13)

The greatest lower bound of the values of α for which equation (8.13) converges, say τ, is called the exponent
of convergence of {aj}. It can be shown [11, Theorem II.10.2] that

τ = lim sup
j→∞

ln j
ln |aj |

. (8.14)

For example, if aj = ej, then τ = 0, whereas if aj = j`, then τ = 1/`.
Theorem 8.27 (Borel’s theorem). Let {aj} ⊂ C\{0} be an arbitrary sequence which converges to infinity, let
0 ≤ τ < ∞ be the exponent of convergence of {aj}, and let χ ∈ N0 be the largest value for which

∞∑
j=1

1
|aj |χ

diverges. Let P(z) be a polynomial of degree N ∈ N0. The infinite product

f (z) B zmeP(z)
∞∏
j=1

(
1 −

z

aj

)
exp

 zaj + · · · +
zχ

χaχj


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is an entire function of finite order
λ = max(N, τ).

Proof: As a consequence of Remark 7.15 and the definition of τ one has that f (z) is an entire function. All
that must then be done is to compute the order of f (z). Let µ ≥ τ be chosen so that equation (8.13) converges.
In a manner similar to that used in the proof of Lemma 7.14, it can be shown that for |z| sufficiently large,∣∣∣∣∣∣∣

(
1 −

z

aj

)
exp

 zaj + · · · +
zχ

χaχj


∣∣∣∣∣∣∣ ≤ exp

(
C1
|z|µ

|aj |µ

)
.

Since P(z) is a polynomial of degree N , this then implies that for |z| sufficiently large,

|f (z)| ≤ exp

C2|z|
N + C1|z|

µ
∞∑
j=1

1
|aj |µ

 .
Thus, f (z) is of finite order λ with

λ ≤ max(N, µ).

Since µ can be chosen to be arbitrarily close to τ, this then implies that

λ ≤ max(N, τ).

However, as a consequence of Theorem 8.12 one has that τ ≤ λ, and as a consequence of Theorem 8.14 one
has that N ≤ λ. Hence,

λ ≥ max(N, τ),

which yields the final result. �

The power of Borel’s Theorem 8.27 is that it allows one to compute the order of an entire function via
the exponent of convergence of its zeros. For example, again consider the entire function

f (z) B
sin z1/2

z1/2
.

The zeros are given by the sequence {j2π2} for j ∈ Z0, which clearly has the exponent of convergence of
τ = 1/2; hence, λ ≥ 1/2. As a consequence of the product representation of f (z) one knows that N = 0;
thus, by Theorem 8.27 one has that λ = 1/2.

9. Analytic Continuation

Suppose that f : U 7→ C is holomorphic. This chapter is concerned with the question of finding a
holomorphic g : V 7→ C with U ⊂ V such that g ≡ f on U . The function g is then a holomorphic extension
of f .

9.0.1. The Schwarz reflection principle

First suppose that U ⊂ {z ∈ C : Im z > 0}. Let Ũ represent the reflection of U with respect to the real
axis, i.e., if z ∈ U , then z̄ ∈ Ũ (see Figure 6). For z ∈ Ũ set

f̃ (z) B f̄ (z̄),

i.e., if f (z) = u(x, y) + iv(x, y), then f̃ (z) = u(x,−y) − iv(x,−y). Since u and v satisfy the Cauchy-Riemann
equations, it is then a simple calculation to check that f̃ is holomorphic on Ũ . The construction of Ũ and f̃
is known as the Schwarz reflection principle.
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I
U

U~

Figure 6: The reflection of the set U about the real axis.

Now suppose that the line segment I B {z ∈ C : a < x < b, y = 0} ⊂ ∂U , and further suppose that f (z)
has a continuous limit as z → I. Construct Ũ and f̃ as above, and set

g(z) B

f (z), z ∈ U

f̃ (z), z ∈ Ũ .

In order for g to have a continuous limit at I, one must clearly have that v(x,0) ≡ 0; hence, now assume
that f (z) is real-valued for z ∈ I. As a consequence, g(z) is holomorphic on U ∪ Ũ , and has a continuous
limit on I. A simple application of Theorem 3.1 then yields that g is holomorphic on U ∪ I ∪ Ũ .
Remark 9.1. If Im f (z)→ α as z → I, then upon setting h(z) B f (z) − iα one can apply the above argument
to h in order to construct a holomorphic function on U ∪ I ∪ Ũ . Thus, in this case a particular translate of
f (z) can be analytically extended via the Schwarz reflection principle.

U

U~

Figure 7: The reflection of the set U about ∂D(0, R).

Now let us consider reflections across circular arcs. This is important to consider, as holomorphic
functions can always be defined on circles via a power series. A more extensive discussion can be found in
[1, Theorem 5.7.2,Section 5.8]. Suppose that for some R > 0,

U B {z ∈ D(0, R) : θ1 < arg z < θ2}.

Given a point z = reiθ ∈ U , the inverse point is given by R2/z̄ = R2eiθ/r. As a consequence, set

Ũ B {z ∈ C\D(0, R) : θ1 < arg z < θ2}

see Figure 7). If one sets

f̃ (z) B f̄

(
R2

z̄

)
,
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then upon applying the Cauchy-Riemann equations one can check that f̃ is holomorphic on Ũ . Furthermore,
on ∂D(0, R) one has that

f̃ (z) = u(x, y) − iv(x, y),

so that a necessary condition for g to be holomorphic across ∂D(0, R) is that Im f ≡ 0 on ∂D(0, R).
The following example shows that Im f ≡ 0 on ∂D(0, R) is a sufficient, but not necessary, condition to

yield an analytic extension. Consider

f (z) B
+∞∑
n=0

zn
(
=

1
1 − z

)
.

It is clear that f : D(0,1) 7→ C is holomorphic. Applying the above theory yields the holomorphic reflection

f̃ (z) =

+∞∑
n=0

1
zn
,

(
= −

z

1 − z

)
.

for z ∈ C\D(0,1). Although f has a continuous limit to ∂D(0,1) except at z = 1, due to the fact that f is not
real-valued on ∂D(0,1), the reflection does not yield an analytic extension of f ; in fact, the two functions
agree only at z = −1. However, f does have an analytic extension given by the sum

f̃ (z) = −
1
z

+∞∑
n=0

1
zn
.

9.1. Definition of an analytic function element

The Schwarz reflection principle yields one way in which one can analytically extend a function. However,
it has the drawback that strong restrictions on the function are necessary in order to achieve holomorphicity
on the boundary.

9.1.1. The gamma function

In order to see another way of extending a function, consider the family of functions

Γa(z) B
∫ 1/a

a
tz−1e−t dt, a ∈ R+.

Set U0 B {z ∈ C : Re z > 0}. Since |tz−1| = tRe z−1, one has that Γa is holomorphic on U0. Furthermore, the
Euler gamma function

Γ(z) B
∫ +∞

0
tz−1e−t dt (9.1)

is the normal limit of the family {Γa(z)}, so that Γ(z) is holomorphic on U0.
Now, integration by parts yields that for z ∈ U0 one can actually write

Γ(z) =
1
z

∫ +∞

0
tze−t dt. (9.2)

The integral is well-defined for z ∈ U1 B {z ∈ C : Re z > −1} and defines a holomorphic function on
U1; hence, Γ can be analytically extended to be holomorphic on U1\{0}, and has a simple pole at z = 0.
Integrating by parts again yields

Γ(z) =
1

z(z + 1)

∫ +∞

0
tz+1e−t dt,

which, except at the poles z = 0,−1, is holomorphic on U2 B {z ∈ C : Re z > −2}. Continuing with
this process eventually yields that Γ(z) is holomorphic on C\{0,−1,−2, . . . }, and has a simple pole at z =

0,−1,−2, . . . .
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Remark 9.2. Note that equation (9.2) can be rewritten as

Γ(z + 1) = zΓ(z). (9.3)

Since Γ(1) = 1, an induction argument yields Γ(n) = (n − 1)! for n ∈ N.
Now let us find alternative representations of the gamma function. For Re z > 0 rewrite equation (9.1) as

Γ(z) =

∫ 1

0
tz−1e−t dt +

∫ ∞

1
tz−1e−t dt

B φ(z) + ψ(z).

Upon replacing e−t by its power series and integrating term-by-term one sees that

φ(z) =

∞∑
j=0

(−1)j

j!

∫ 1

0
t j−1+z dt =

∞∑
j=0

(−1)j

j!(z + j)
.

Thus, φ(z) has simple poles at z = −j for j ∈ N0 with residues (−1)j/j!; otherwise, φ(z) is holomorphic. Now,
upon using the functional relationship equation (9.3) one sees that

z(z + 1) · · · (z + j)Γ(z) = Γ(z + j + 1),

so that upon letting z → −j ∈ N0 one sees that

lim
z→−j

(z + j)Γ(z) =
(−1)jΓ(1)

j!
.

In other words, Γ(z) has simple poles at z = −j ∈ N0 with residues (−1)j/j!. One then has that Γ(z) − φ(z) is
an entire function, as each function has poles at z = −j ∈ N0 with the same principal part. Since Γ(z)−φ(z) =

ψ(z) for Re z > 0, and ψ(z) is entire (an exercise for the student), one then has that Γ(z) − φ(z) = ψ(z) for all
z ∈ C, i.e.,

Γ(z) =

∞∑
j=0

(−1)j

j!(z + j)
+

∫ ∞

1
tz−1e−t dt. (9.4)

It can also be shown that Γ(z) has the representation

Γ(z) =
1
z

∞∏
j=1

[(
j + 1
j

)z ( j

j + z

)]
(9.5)

[8, Proposition 15.1.6]; hence, the gamma function never vanishes. If one sets f (z) B 1/Γ(z), then one has
that f (z) is entire with simple zeros for z = −n ∈ N0. As a consequence of Remark 7.15 and the Weierstrass
factorization Theorem 7.18 one then has that

f (z) = eg(z)z
∞∏
j=1

(
1 +

z

j

)
e−z/j

for some entire function g(z). Note that

eg(0) = lim
z→0

f (z)
z

= 1;

hence, without loss of generality it can be assumed that g(0) = 0.
The determination of a functional relationship for g(z) can be found via the following argument [13,

Section 69]. Let fn(z) be the partial product for f (z), i.e.,

fn(z) B
1
n!

e(g(z)−
∑n
j=1 z/j)z

n∏
j=1

(z + j). (9.6)
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Upon setting

αn B
n∑
j=1

1
j
− ln(n + 1),

one then sees that

zfn(z + 1)
fn(z)

= (z + n + 1)e(g(z+1)−g(z)−
∑n
j=1 1/j)

=

(
1 +

z

n + 1

)
e(g(z+1)−g(z)−αn ).

It can be shown that αn → γ ≈ 0.5772 . . . (the Euler constant) [8, Lemma 15.1.8]. Thus, upon taking the
limit n → +∞ one has that

zf (z + 1)
f (z)

= e(g(z+1)−g(z)−γ).

As a consequence of equation (9.3) one can then write

1 = e(g(z+1)−g(z)−γ),

i.e.,
g(z + 1) − g(z) = γ + i2kπ, k ∈ Z. (9.7)

Since g(0) = 0, this yields that
g(1) = γ + i2kπ, k ∈ Z. (9.8)

One solution to equation (9.7) and equation (9.8) is g(z) = γz.
It is shown in [8, Proposition 15.1.9] that this is actually the desired solution. This requires an equivalent

formulation, which is done in Proposition 9.7, of the gamma function representation given in equation (9.5).
The following result has now been shown.
Proposition 9.3. The gamma function is given by

1
Γ(z)

= eγzz
∞∏
j=1

(
1 +

z

j

)
e−z/j,

where γ is the Euler constant.
As a consequence of the representation given in Proposition 9.3, one has that Γ(z)−1 is an entire function

with zeros at j ∈ N0. Upon using equation (8.14) one sees that the exponent of convergence is τ = 1; hence,
by Borel’s Theorem 8.27 one has that the order of Γ(z)−1 is λ = 1. By Picard’s Little Theorem 8.24 one
finally has that there exists at most one finite A-point such that Γ(z)−1 = A has a finite number of solutions,
i.e., there exists at most one B ∈ C such that Γ(z) = B has only a finite number of solutions. In fact, as a
consequence of the representation in equation (9.5) it is known that the exceptional point is B = 0.
Proposition 9.4. The range of the gamma function is C\{0}. Furthermore, for each A ∈ C\{0} there exists
an infinite number of solutions to Γ(z) = A.

Now let us find another relationship satisfied by the gamma function. Note that

1
Γ(−z)

= −e−γzz
∞∏
j=1

(
1 −

z

j

)
ez/j;

this implies that
1

Γ(z)Γ(−z)
= −z2

∞∏
j=1

(
1 −

z2

j2

)
.

Now, in Section 7.2 it was shown that

sin(πz) = πz
∞∏
j=1

(
1 −

z2

j2

)
;



81 Todd Kapitula

hence, the above can be rewritten to say

−
1

zΓ(z)Γ(−z)
=

sin(πz)
π

.

One has as a consequence of equation (9.3) that −zΓ(−z) = Γ(1 − z), which in turn yields

1
Γ(z)Γ(1 − z)

=
sin(πz)
π

.

The following has now been proven.

Proposition 9.5. The gamma function satisfies the relationship

Γ(z)Γ(1 − z) =
π

sin(πz)
.

Remark 9.6. Note that Γ(1/2) =
√
π, so that as a consequence of equation (9.3),

Γ(n + 1/2) =
1 · 3 · · · (2n − 1)

2n
√
π, n ∈ N.

Finally, again consider equation (9.6), where now g(z) = γz. Setting

�n B γ −
n∑
j=1

1
j

+ lnn

(note that �n → 0 as n → +∞), one has that

fn(z) =
1

n!nz
e�nzz

n∏
j=1

(z + j).

Upon taking the limit one then gets the following.

Proposition 9.7. The gamma function satisfies

Γ(z) = lim
n→+∞

n!nz

z
∏n

j=1(z + j)
.

9.1.2. Multi-valued functions

Now suppose that f1 : R1 7→ C and f2 : R2 7→ C are holomorphic, with f1 ≡ f2 on the domain R1 ∩R2. One
then has that f1 ≡ f2 on R1 ∪ R2, and one can consider f2 to be the analytic continuation of f1. Similarly, if
f3 : R3 7→ C is holomorphic with f3 ≡ f2 on the domain R2∩R3, then one can conclude that f3 ≡ f2 on R2∪R3.
Suppose that R3 ∩ R1 is a domain. Is f1 ≡ f3?

For example, consider the overlapping domains

Rj B {z ∈ C :
3π
4
j ≤ arg z < π +

3π
4
j}, j = 1, . . . ,3,

and let fj(z) be the holomorphic branch of ln z = ln |z| + i arg z on Rj. It is clear that f2 is the analytic
continuation of f1, and that f3 is the analytic continuation of f2. Furthermore, R3∩R1 is a domain. However,

f1(−1) = iπ , i3π = f3(−1),

so that f3 . f1. The difficulty is that ln z has a branch point at z = 0, which is contained in each domain Rj.
The function f3 is defined on a different sheet of the associated Riemann surface than is f1.
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9.3. The Monodromy theorem

As a consequence of the above discussion, it is natural to wonder the conditions for which f3 ≡ f1. Not
surprisingly, all that is required is that the domain be simply connected (which is not true for a Riemann
surface).
Definition 9.8. Let U ⊂ C be open and simply connected, and let γj : [0,1] 7→ U be curves for j = 1,2.
Assume that for P, Q ∈ U ,

γ1(0) = γ2(0) = P, γ1(1) = γ2(1) = Q.

γ1 is homotopic to γ2 if there is a continuous function H : [0,1] × [0,1] 7→ U such that

(a) H(0, t) ≡ γ1(t)

(b) H(1, t) ≡ γ2(t)

(c) H(s,0) ≡ P

(d) H(s,1) ≡ Q.

One may think of a homotopy as being a continuous deformation of one curve to another with the
endpoints being fixed.
Theorem 9.9. [Monodromy theorem] Let U ⊂ C be simply connected, and suppose that f : U0 ⊂ U 7→ C is
holomorphic. Let γ1, γ2 ⊂ U be two smooth curves which begin at P ⊂ U0 and terminate at Q ⊂ U . If γ1 is
homotopic to γ2, then the analytic continuation of f along γ1 is equal to the analytic continuation of f along
γ2.

Proof: See [8, Section 10.3]. �

9.6. The Schwarz-Christoffel transformation

Much of the following discussion can be found in [1, Section 5.6]. Let Γ be the piecewise linear boundary
of a polygon in the w-plane with vertices A1, . . . , An. Let the interior angle at Aj be denoted by αjπ. It is
clear that if Aj is finite, then 0 < αj ≤ 2 (αj = 2 corresponds to the tip of a "slit"), whereas if Aj = ∞, then via
the transformation z = 1/t one has that −2 ≤ αj ≤ 0. Note that for a closed polygon, since the sum of the
exterior angles is 2π,

n∑
j=1

(1 − αj) = 2,

i.e.,
n∑
j=1

αj = n − 2.

The Schwarz-Christoffel transformation is defined by

dw
dz

= γ(z − a1)α1−1 · · · (z − an)αn−1, (9.9)

where γ ∈ C and a1, . . . , an ∈ R. It has the properties that:

(a) the vertex Aj is mapped to aj

(b) Γ is mapped to the real axis

(c) the transformation conformally maps the upper half plane to the interior of the polygon.

Remark 9.10. Recall that the Riemann Mapping Theorem 6.26 guarantees the existence of such a mapping.
The utility of the Schwarz-Christoffel transformation is that it tells us precisely how to do it.
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Recall that for bilinear transformations the correspondence of three (and only three) points on the
boundaries of the two domains can be arbitrarily prescribed. This result is actually true for any conformal
map between the boundary of two simply connected domains. Thus, the three vertices A1, . . . , A3 can be
associated with any three points a1, . . . , a3 ∈ R; however, this then fixes the points a4, . . . , an. The actual
determination of these points may be difficult, although symmetry considerations are usually helpful.

The integration of equation (9.9) typically yields a multi-valued function. A single branch is chosen via
the requirement

0 < arg(z − aj) < π, j = 1, . . . , n.

The function f (z) defined by the transformation will then be holomorphic in the upper half plane with branch
points at z = aj.

Equation (9.9) implicitly assumes that none of the points a1, . . . , an are ∞. What if this feature was
desired? Consider the transformation

z B an −
1
ζ

=⇒ ζ =
1

an − z
.

Under this transformation an 7→ ∞ and

aj 7→ ζj =
1

an − aj
, j = 1, . . . , n − 1.

Now,
d

dz
= ζ 2 d

dζ
,

so that equation (9.9) can be rewritten as

ζ 2 dw
dζ

= γ

(
1
ζ1
−

1
ζ

)α1−1

· · ·

(
−

1
ζ

)αn−1

.

Upon getting a common denominator, setting

γ̂ B γ
n−1∏
j=1

ζ
1−αj
j ,

and using the fact that
ζ
∑n
j=1(1−αj) = ζ 2,

one gets the new equation
dw
dζ

= γ̂(ζ − ζ1)α1−1 · · · (ζ − ζn−1)αn−1−1.

Thus, equation (9.9) is still valid even if the point ∞ is removed. However, note that only two other vertices
can now be arbitrarily prescribed, since An 7→ ∞.

For example, consider the half strip bounded by the curves

γL B {z ∈ C : Re z = −k, Im z ≥ 0}
γR B {z ∈ C : Re z = k, Im z ≥ 0}
γB B {z ∈ C : |Re z| ≤ k, Im z = 0}

(see Figure 8). The vertices are given by z = ±k + i∞ and z = ±k. As a consequence of the above discussion,
upon mapping −k + i∞ 7→ −∞ + i0, one can arbitrarily choose the placement of two more points. Suppose
that

±k 7→ ±1.

Symmetry considerations then yield that k + i∞ 7→ +∞ + i0. Now, one has that α1 = α2 = 1/2. The
appropriate Schwarz-Christoffel transformation then satisfies

dw
dz

= γ(z + 1)−1/2(z − 1)−1/2 =
γ̃

√
1 − z2

,
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w

k-k

Figure 8: The mapping of the upper half plane to the half strip.

which upon integration yields
w = γ̃ sin−1 z + c.

One must have that
±k = γ̃ sin−1(±1) + c,

which implies that c = 0 and γ̃ = 2k/π. Thus, the transformation is

w =
2k
π

sin−1 z =⇒ z = sin
( π
2k
w

)
.

Remark 9.11. These ideas can also be used to map the exterior of a closed polygon to the upper half plane.
The mapping defined by equation (9.9) maps the boundary of the polygon to the real line. Thus, all that
must be done is to map the point ∞ to the interior of the of the upper half plane, i.e., ∞ 7→ ia0, a0 ∈ R

+. The
transformation then is modified to be

dw
dz

=
γ

(z − ia0)2(z + ia0)2 (z − a1)α1−1 · · · (z − an)αn−1. (9.10)

w

k-k

si

Figure 9: The mapping of the upper half plane to the exterior of the triangle.

For another example, consider the isosceles triangle with vertices at ±k, is for some k, s ∈ R+. The goal
is to determine the transformation which maps that portion of the exterior of the triangle which resides
in the upper half plane to the upper half plane (see Figure 9). Since the domain to be mapped is only a
subset of the exterior of the polygon, we will use equation (9.9) in order to construct the transformation.
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Set A1 B −k, A2 B is, and A3 B k. The other two vertices are given by z = ±∞ + i0. Upon mapping
−∞ + i0 7→ −∞ + i0, A1 7→ −1, A2 7→ 0, symmetry considerations yield that A3 7→ 1 and +∞ + i0 7→ +∞ + i0.
The interior angle at A1 and A3 is πα, and that at A2 is π(1 − 2α). Hence, the exterior angles are given by
π(1 − α) and π(1 + 2α), respectively. One sees that equation (9.9) becomes

dw
dz

= γ(z + 1)−αz2α(z − 1)−α = γ̃
z2α

(1 − z2)α
.

Integration yields

w = γ̃

∫ z

0

ζ 2α

(1 − ζ 2)α
dζ + c.

Since A2 7→ 0 and A3 7→ 1 one has that

c = is, k = γ̃

∫ 1

0

ζ 2α

(1 − ζ 2)α
dζ + is.

Now, by setting t B ζ 2 one can rewrite the expression for k as

k =
1
2
γ̃

∫ 1

0
tα−1/2(1 − t)−α dt + is.

Upon setting p B α + 1/2 and q B 1 − α one then gets

k =
1
2
γ̃B(p, q) + is,

where

B(p, q) B
∫ 1

0
tp−1(1 − t)q−1 dt

is the beta function. It can be shown [8, Proposition 15.1.13] that

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

,

so that with the above definitions for p and q,

B(p, q) =
Γ(α + 1/2)Γ(1 − α)

Γ(3/2)
.

Since
Γ

(3
2

)
=

1
2

Γ

(1
2

)
=

1
2
√
π,

one then has that

γ̃ =
(k − is)

√
π

Γ(α + 1/2)Γ(1 − α)
.

Hence, the transformation is given by

w =
(k − is)

√
π

Γ(α + 1/2)Γ(1 − α)

∫ z

0

ζ 2α

(1 − ζ 2)α
dζ + is.

An interesting limit is k → 0+, i.e., α → 1/2. This domain corresponds to the exterior of a "slit". In this
case the transformation becomes

w = is
(
1 −

∫ z

0

ζ

(1 − ζ 2)1/2
dζ

)
= s
√
z2 − 1.

The interested reader should consult [1, Example 5.6.5] for a direct calculation.
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Figure 10: The boundary conditions on the two different domains.

9.6.1. Application: Heat flow

Let f : D 7→ D′ be a conformal map, and suppose that Φ(u, v) : D′ 7→ R is harmonic, i.e., it satisfies
Laplace’s equation (

∂2

∂u2 +
∂2

∂v2

)
Φ = 0.

Since f is conformal and
∂2

∂x2 +
∂2

∂y2 = |f ′(z)|2
(
∂2

∂u2 +
∂2

∂v2

)
,

one then has that Φ(u(x, y), v(x, y)) : D 7→ R is harmonic. This simple fact allows one to first solve Laplace’s
equation on the upper-half plane, and then use a conformal map to solve it on a more complicated domain.

Consider the following example (see [1, Chapter 5.4] for more examples). If T denotes the temperature
of a solid, it can be demonstrated that T satisfies Laplace’s equation. As discussed in Section 1.5, it is then
known that there exists a holomorphic Ω, known as the complex temperature, such that T = Re Ω.

Suppose that a semi-infinite slab has its vertical boundaries maintained at temperatures T0 and 2T0,
while its horizontal boundary is maintained at a temperature of zero (see Figure 10). We will determine the
steady-state temperature within the slab. It is known that the transformation

f (z) B sin
(πz
a

)
= sin

(πx
a

)
cosh

(πy
a

)
+ i cos

(πx
a

)
sinh

(πy
a

) (9.11)

is a conformal map of the semi-infinite slab to the upper-half plane U (see the discussion associated with
Figure 8). Following the above idea, we will first solve Laplace’s equation on U , and then use the conformal
map to solve it on the original domain. Set

F (w) B α1 ln(w + 1) + α ln(w − 1) + iα3,

where αj ∈ R for j = 1, . . . ,3, and

w + 1 = r1eiθ1 , w − 1 = r2eiθ2 ; 0 ≤ θ1, θ2 ≤ π.

F is holomorphic on U ; hence,

T B ImF

= α1θ1 + α2θ2 + α3
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is harmonic on U . The boundary conditions are such that if θ1 = θ2 = 0, then T = 2T0, whereas if
θ1 = 0, θ2 = π, then T = 0, and if θ1 = θ2 = π, then T = T0. The solution is then given by

T =
T0

π
θ1 −

2T0

π
θ2 + 2T0

=
T0

π
tan−1 v

u + 1
−

2T0

π
tan−1 v

u − 1
+ 2T0.

Using equation (9.11) with u = Re f and v = Im f yields the final result.

9.7. The Jacobian "sn" function

w

1-1

si-1+ si1+

Figure 11: The mapping of the upper half plane to the interior of a rectangle.

As a final example, consider the rectangle with vertices ±1 and ±1 + is, s ∈ R+ (see Figure 11). Let
k ∈ (0,1) be given. If one maps

−1 + is 7→ −
1
k
, −1 7→ −1, 0 7→ 0,

then by symmetry one has

1 7→ 1, 1 + is 7→
1
k
.

Since the internal angles are all π/2, in this case equation (9.9) becomes

dw
dz

= γ(z2 − 1)−1/2(z2 − 1/k2)−1/2.

Upon setting

F (z, k) B
∫ z

0

1√
(1 − ζ 2)(1 − k2ζ 2)

dζ, (9.12)

and using the fact that 0 7→ 0, one has that the transformation is given by

w = γ̃F (z, k).

Set

K(k) B F (1, k) =

∫ 1

0

1√
(1 − ζ 2)(1 − k2ζ 2)

dζ. (9.13)

The function K(k) is known as the complete elliptic integral of the first kind, and the parameter k is the
modulus of the elliptic integral. It is straightforward to check that K(k) is monotone increasing with

lim
k→0+

K(k) =
π

2
, lim

k→1−
K(k) = +∞.
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Since 1 7→ 1, one has that γ̃ = 1/K(k), so that the conformal map is given by

w =
F (z, k)
K(k)

.

The relationship between s and k is made explicit via

1 + is =
F (1/k, k)
K(k)

= 1 + i
K ′(k)
K(k)

,

where

K ′(k) B
∫ 1/k

1

1√
(ζ 2 − 1)(1 − k2ζ 2)

dζ.

The change of variables ζ B (1 − k′2t2)−1/2, where k′2 B 1 − k2, yields

K ′(k) = F (1, k′) = K(
√

1 − k2).

In conclusion, the conformal map is given by

w =
F (z, k)
K(k)

, s =
K ′(k)
K(k)

.

If one defines the rectangle to have vertices ±K(k) and ±K(k) + iK ′(k), then the conformal map is given
by w = F (z, k). The Jacobi "sn" function is defined to be

sn(w, k) B F−1(w, k), (9.14)

and it is a conformal map from the aforementioned rectangle to the upper half of the complex plane. By
definition one has that sn(0, k) = 0 for all k ∈ (0,1); furthermore, upon using the fact that

d
dw

sn(0, k) =
1

F ′(0, k)

one gets that
d

dz
sn(0, k) = 1.

Hence, the zero is simple. Further note that as k → 0+, i.e., s → +∞, one has that the rectangle becomes
an infinite strip with vertices ±K(0). Upon referring to the example associated with Figure 8, and noting the
mapping of the vertices, one then sees that

lim
k→0+

sn(w, k) = sin(w).

Hence, in this limit the Jacobi function is periodic. A more detailed examination of the Jacobi elliptic
functions will be undertaken in Section 10.

10. Elliptic Functions and Applications

The primary source for the material presented in this section is [9]. Much of what will be presented
herein is a supplement to [8, Chapter 10.6].
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10.1. Theta functions

10.1.1. Definitions, periodicity properties, and identities

Consider the initial-boundary value problem

θt = κθzz; θ(0, t) = θ(π, t) = 0, θ(z,0) = f (z). (10.1)

Using the method of separation of variables, one sees that the solution is given by

θ(z, t) =

∞∑
n=1

bne−κn
2t sinnz, bn =

2
π

∫ π

0
f (z) sinnz dz.

If one considers the initial value f (z) = πδ(z − π/2), then one has that bn = 2 sin(nπ/2), which in turn
yields

θ(z, t) = 2
∞∑
n=1

(−1)ne−κ(2n+1)2t sin(2n + 1)z.

Upon setting q B e−4κt (note that |q| ≤ 1), one then has that

θ(z, t) = θ1(z, q) B 2
∞∑
n=1

(−1)nq(n+1/2)2
sin(2n + 1)z

= −i
+∞∑
n=−∞

(−1)nq(n+1/2)2
ei(2n+1)z.

(10.2)

Note that θ1(z + 2π, q) = θ1(z, q), and that θ1(z, q) is odd in z; furthermore, it has zeros at z = mπ for m ∈ Z.
Equation (10.2) defines the first theta function. The second theta function is given by

θ2(z, q) B θ1(z + π/2, q)

=

+∞∑
n=−∞

q(n+1/2)2
ei(2n+1)z.

(10.3)

Note that θ2(z, q) is also 2π-periodic, and is even in z.
If one now considers equation (10.1) with the boundary conditions θz(0, t) = θz(π, t) = 0, then with

f (z) = πδ(z − π/2) one gets the solution θ(z, t) = θ4(z, q), where

θ4(z, q) B 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nz

=

+∞∑
n=−∞

(−1)nqn
2
ei2nz.

(10.4)

Equation (10.4) defines the fourth theta function. Note that θ4(z, q) is π-periodic, and is even in z. Finally,
one gets the third theta function via

θ3(z, q) B θ4(z + π/2, q)

=

+∞∑
n=−∞

qn
2
ei2nz.

(10.5)

Note that θ3(z, q) is π-periodic, and is even in z.
As it will be seen later, the theta functions will be the building blocks for the elliptic functions. Conse-

quently, their properties must be understood. Let us now show that the theta functions are entire. It will
be sufficient to demonstrate this fact for θ1(z, q). Let Y > 0 be given, and consider the series

+∞∑
n=0

(−1)nq(n+1/2)2
ei(2n+1)z, z ∈ ΩY B {z ∈ C : | Im z| ≤ Y }.
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One has the estimate
|q(n+1/2)2

ei(2n+1)z | ≤ |q|(n+1/2)2
e−(2n+1)y ≤ |q|(n+1/2)2

e(2n+1)Y ,

so as a consequence of the ratio test the series is uniformly convergent on ΩY . Hence, the sum converges
to a holomorphic function on ΩY , and since Y > 0 is arbitrary, the sum is entire. A similar argument shows
that the sum

−1∑
n=−∞

(−1)nq(n+1/2)2
ei(2n+1)z

has the same properties; hence, θ1(z, q) is entire.
Remark 10.1. It is interesting to note that the theta functions are entire in z for fixed q, and if z is fixed,
then they are holomorphic for q ∈ D(0,1).

Now let us locate the zeros of the theta functions. By construction one clearly has that θ1(z, q) has zeros
at z = mπ for m ∈ Z. Does it have any others? Define τ via

τ = −
i
π

ln q, −π < arg q ≤ π, (10.6)

so that

θ1(z|τ) = −i
+∞∑
n=−∞

(−1)nei(n+1/2)2πτei(2n+1)z.

Simple algebraic manipulation then yields

θ1(z + πτ|τ) = ie−iπτ−2iz
+∞∑
n=−∞

(−1)n+1ei(n+3/2)2πτei(2n+3)z

= −(qe2iz)−1θ1(z|τ).

Setting λ B qe2iz, one then gets that
θ1(z, q) = −λθ1(z + πτ, q). (10.7)

Similarly, it can be shown that

θ2(z, q) = λθ2(z + πτ, q), θ3(z, q) = λθ3(z + πτ, q), θ4(z, q) = −λθ4(z + πτ, q). (10.8)

One consequence of equation (10.7) is that θ1(z, q) = 0 for z = mπ + nπτ, m, n ∈ Z (see Figure 12), while
as a consequence of equation (10.8) one has that for m, n ∈ Z,

θ2(z, q) = 0, z = (m +
1
2

)π + nπτ.

If one now considers equation (10.4), then a series of simple algebraic manipulations yields that

θ4(
1
2
πτ, q) = −θ4(−

1
2
πτ, q).

Since θ4 is even in z, this necessarily yields that θ4(πτ/2, q) = 0. Similarly, one finds that θ3(π(1+τ)/2, q) = 0.
As a consequence of equation (10.8) one then sees that

θ3(z, q) = 0, z = (m +
1
2

)π + (n +
1
2

)πτ

θ4(z, q) = 0, z = mπ + (n +
1
2

)πτ.
(10.9)

Remark 10.2. Note that if q ∈ (0,1), then by equation (10.6) τ ∈ iR+; thus, in this case the zeros are the
vertices of an infinite rectangular lattice in the complex plane (see Figure 12). If Im q , 0, then the vertices
will be on parallelograms.
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πτ

2πτ

−πτ

π 2π−π−2π

x

y

Figure 12: The zeros of the first theta function θ1(z|τ) for τ ∈ iR+.

Finally, let us derive one of the many important properties of the theta functions (see [9, Chapter 1.4]
for many more). Since θ1(z, q) is odd in z, one has that θ1(0, q) = 0. Upon differentiating term-by-term one
sees that

θ′1(0, q) = 2q1/4 + O(|q|9/4).

A simple evaluation yields

θ2(0, q) = 2q1/4 + O(|q|9/4), θ3(0, q) = 1 + O(|q|), θ4(0, q) = 1 + O(|q|).

Hence, one sees that

lim
q→0

θ′1(0, q)
θ2(0, q)θ3(0, q)θ4(0, q)

= 1.

Now, it can be shown [9, Chapter 1.5] that

θ′1(0, q)
θ2(0, q)θ3(0, q)θ4(0, q)

= lim
q→0

θ′1(0, q)
θ2(0, q)θ3(0, q)θ4(0, q)

for any q ∈ (−1,1). This yields the identity

θ′1(0, q) = θ2(0, q)θ3(0, q)θ4(0, q). (10.10)

10.1.2. Theta functions as infinite products

From this point forward the dependence of the theta functions on q will be implicit. Since the theta
functions are entire with an infinite number of zeros, they can be represented as an infinite product. The
goal of this section is to make this representation explicit. Consider

F (t, q) B
∞∏
n=1

(1 + q2n−1t)(1 + q2n−1t−1),

where t ∈ C\{0} and q ∈ D(0,1). For r ≤ |t | ≤ R and q ∈ D(0, ρ) one has that

|q2n−1(t + t−1) + q4n−2| ≤ |q|2n−1(|t | + |t |−1) + |q|4n−2

≤ ρ2n−1(R + r−1) + ρ4n−2;
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hence, by Theorem 7.10 one has that the infinite product converges uniformly for r ≤ |t | ≤ R and q ∈ D(0, ρ),
so that it is holomorphic on C\{0} × D(0,1). Note that its zeros are given by t = −q±(2n−1) for n ∈ N.

Since F (t, q) is holomorphic on C\{0}, it can be written as the Laurent series

F (t, q) =

+∞∑
n=−∞

ant
n.

Upon noting that

F (q2t, q) =

∞∏
n=1

(1 + q2n+1t)(1 + q2n−3t−1)

=
1 + (qt)−1

1 + qt
F (t, q)

=
1
qt
F (t, q),

one gets that

+∞∑
n=−∞

ant
n = qt

+∞∑
n=−∞

anq
2ntn

=

+∞∑
n=−∞

an−1q
2n−1tn.

Equating coefficients for n ∈ N then yields the recursion relationship

an = q2n−1an−1,

i.e.,
an = qn

2
a0, n ∈ N.

In this last step one uses the fact that
n∑
j=1

(2j − 1) = n2.

Since F (t, q) = F (t−1, q), one has that an = a−n. Hence, one finally sees that

F (t, q) = a0

+∞∑
n=−∞

qn
2
tn , a0 ∈ C\{0}.

Upon referencing equation (10.5) one immediately sees that

F (e2iz, q) = a0θ3(z, q), F (−e2iz, q) = a0θ4(z, q); (10.11)

in other words,

θ3(z, q) =
1
a0

∞∏
n=1

(1 + q2n−1e2iz)(1 + q2n−1e−2iz)

θ4(z, q) =
1
a0

∞∏
n=1

(1 − q2n−1e2iz)(1 − q2n−1e−2iz).

(10.12)

It is easy to see that the other two theta functions can be written in terms of F (±qe2iz, q), i.e.,

F (qe2iz, q) =
a0

q1/4
e−izθ2(z, q), F (−qe2iz, q) = i

a0

q1/4
e−izθ1(z, q);
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in other words,

θ1(z, q) = −i
1
a0
q1/4eiz

∞∏
n=1

(1 − q2ne2iz)(1 − q2ne−2iz)

θ2(z, q) =
1
a0
q1/4eiz

∞∏
n=1

(1 + q2ne2iz)(1 + q2ne−2iz).

(10.13)

Upon using the fact that θ1 is odd and θ2 is even in z, one finally finds that equation (10.13) can be rewritten
as

θ1(z, q) =
2
a0
q1/4 sin z

∞∏
n=1

(1 − q2ne2iz)(1 − q2ne−2iz)

θ2(z, q) =
2
a0
q1/4 cos z

∞∏
n=1

(1 + q2ne2iz)(1 + q2ne−2iz).

(10.14)

It now remains to compute the constant a0. Note that

F (±1, q) =

∞∏
n=1

(1 ± q2n−1)2,

so that

a0θ3(0, q) =

∞∏
n=1

(1 + q2n−1)2, a0θ4(0, q) =

∞∏
n=1

(1 − q2n−1)2.

Similar expressions relating a0θ′1(0, q) and a0θ2(0, q) with F (±q, q) can be found. Upon using equa-
tion (10.10) it is eventually seen that

a0 = 1/
∞∏
n=1

(1 − q2n).

As a consequence, one can now write equation (10.11) as

θ3(z, q) =

∞∏
n=1

(1 − q2n)(1 + 2q2n−1 cos 2z + q4n−2), θ4(z, q) =

∞∏
n=1

(1 − q2n)(1 − 2q2n−1 cos 2z + q4n−2).

Similarly,

θ1(z, q) = 2q1/4 sin z
∞∏
n=1

(1−q2n)(1−2q2n cos 2z+q4n), θ2(z, q) = 2q1/4 cos z
∞∏
n=1

(1−q2n)(1+2q2n cos 2z+q4n).

Note that the above representations yield that all of the zeros of the theta functions are precisely captured
in equation (10.9). Furthermore, note that for fixed z ∈ C that the zeros of the theta functions are dense on
∂D(0,1); hence, these functions cannot be analytically extended across the boundary.

10.2. Jacobi’s elliptic functions

Set

k B
θ2(0)2

θ3(0)2

= 4q1/2
∞∏
n=1

(
1 + q2n

1 + q2n−1

)4

,
(10.15)
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and

k′ B
θ4(0)2

θ3(0)2

=

∞∏
n=1

(
1 − q2n−1

1 + q2n−1

)4

,
(10.16)

Note that by applying equation (10.12) and equation (10.14), the above definitions are valid even without
the knowledge of a0. As a consequence of the identity

θ3(0)4 = θ2(0)4 + θ4(0)4 (10.17)

one has that
k2 + k′2 = 1. (10.18)

For q ∈ (0,1) each factor associated with k′ is decreasing, so that k′ is uniquely defined by q. Hence, given
k ∈ (0,1), one uniquely defines k′ ∈ (0,1) via equation (10.18), and then consequently uniquely defines
q ∈ (0,1) via an inversion of equation (10.16).

Recalling equation (10.6), set

K B
1
2
πθ3(0)2

=
1
2
π
∞∏
n=1

(1 − q2n)2(1 + q2n−1)4,
(10.19)

and
K ′ B −iτK

= −
1
2

ln q
∞∏
n=1

(1 − q2n)2(1 + q2n−1)4.
(10.20)

Following the argument given above, both of these functions can be thought of as functions of k ∈ (0,1).
Note that by definition,

q = e−πK/K
′

.

10.2.1. Definition of Jacobi’s elliptic functions

For
u B θ3(0)2z

=

 ∞∏
n=1

(1 − q2n)2(1 + q2n−1)4

 z (10.21)

define the elliptic functions

snu B

√
1
k

θ1(z)
θ4(z)

, cnu B

√
k′

k

θ2(z)
θ4(z)

, dnu B
√
k′
θ3(z)
θ4(z)

(10.22)

Upon squaring and using the identity

θ2
4 =

1
k
θ2

1 +
k′

k
θ2

2,

one obtains
sn2 u + cn2 u = 1. (10.23)

Upon squaring and using the identities

θ2
4 = kθ2

1 + k′θ2
3, θ2

4 =
1
k′
θ2

3 −
k

k′
θ2

2,

one similarly sees that
dn2 u + k2 sn2 u = 1, dn2 u − k2 cn2 u = k′2. (10.24)

It is an exercise to see the form of these identities in the limit k → 0+.
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10.2.2. Double periodicity of Jacobi’s elliptic functions

K'i2

x

K'i3

y

iK'

-iK'

K'-i2

2K 4K-2K-4K

cell

Figure 13: The zeros (blue) and poles (red) of snu for k ∈ (0,1). The “cell" and its properties are
discussed in more detail in Section 10.3.

As a consequence of equation (10.9), all of the elliptic functions will have simple poles when θ4(z) = 0,
i.e., for m, n ∈ Z, when

u = mθ3(0)2π + (n +
1
2

)θ3(0)2πτ

= 2mK + i(2n + 1)K ′.
(10.25)

The zeros are found by setting θj(z) = 0 for j = 1, . . . ,3. Upon doing so it is seen that

snu = 0, u = 2mK + i2nK ′

cnu = 0, u = (2m + 1)K + i2nK ′

dnu = 0, u = (2m + 1)K + i(2n + 1)K ′
(10.26)

(see Figure 13). Finally, upon using the identities in equation (10.7) and equation (10.8) it is seen that

snu = sn(u + 2πθ3(0)2), snu = sn(u + πτθ3(0)2),

i.e.,

snu = sn(u + 4K), snu = sn(u + i2K ′). (10.27)

In a similar fashion,

cnu = cn(u + 4K) = cn(u + 2K + i2K ′); dnu = dn(u + 2K) = dn(u + i4K ′) (10.28)

In the above, recall that if q ∈ (0,1), then K, K ′ ∈ R+.
Definition 10.3. An elliptic function is any doubly periodic function in which the ratio of the periods is
nonreal, and which is holomorphic except for poles.
Remark 10.4. One has that:

(a) If a function is entire and doubly periodic, then it is uniformly bounded, and hence constant.

(b) For u ∈ R the graphs of snu and cnu are similar to those of sinu and cosu, respectively, except
that the zeros are now located at u = 2mK and u = (2m +1)K, respectively. This property has been
extensively exploited in the research articles [3–5], for example.
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(c) It can be shown that for k ∈ (0,1),

lim
k→0+

snu = sinu; lim
k→0+

cnu = cosu; lim
k→0+

dnu = 1,

and
lim
k→1−

snu = tanhu; lim
k→1−

cnu = sechu; lim
k→1−

dnu = sechu.

Hence, the Jacobi elliptic functions can be thought of as a bridge between the trigonometric func-
tions and the hyperbolic functions.

10.2.3. Derivatives of Jacobi’s elliptic functions

As mentioned in class, and as is well-documented in [9, Chapters 4-5], the Jacobi elliptic functions
frequently arise in applications as solutions to ordinary differential equations. It is an exercise to show that

d
dz

(
θ1

θ4

)
= θ4(0)2 θ2θ3

θ2
4
,

d
dz

(
θ2

θ4

)
= −θ3(0)2 θ1θ3

θ2
4
,

d
dz

(
θ3

θ4

)
= −θ2(0)2 θ1θ2

θ2
4
.

Upon using equation (10.21) and equation (10.22), one then sees that

d
du

snu = cnu dnu,
d

du
cnu = − snu dnu,

d
du

dnu = −k2 snu cnu. (10.29)

The identities in equation (10.23) and equation (10.24) can now be easily derived. Set w1 B snu, w2 B
cnu, and w3 B dnu. Equation (10.29) can then be rewritten as

w′1 = w2w3, w1(0) = 0; w′2 = −w1w3, w2(0) = 1; w′3 = −k2w1w2, w3(0) = 1.

Multiplying the first equation by w1, the second by w2, and adding yields

d
du

(w2
1 +w2

2) = 0.

The initial conditions then reveals that
w2

1 +w2
2 = 1,

which is simply equation (10.23). Similarly, one sees that

k2w2
1 +w2

3 = 1,

which is the first equation in equation (10.24). Note that these equations then imply that

(w′1)2 = w2
2w

2
3

= (1 −w2
1)(1 − k2w2

1),
(10.30)

so that
u =

∫ w1

0

1√
(1 − ζ 2)(1 − k2ζ 2)

dζ ;

in other words,

sn−1 u =

∫ u

0

1√
(1 − ζ 2)(1 − k2ζ 2)

dζ.

Comparison of the above with equation (9.14) shows the intimate relationship between the conformal map
presented in Section 9.7 and the theory developed within this section. Furthermore, since as a conse-
quence of equation (9.14) one has that snK = 1 (also see [9, equation (2.2.20)]), one recovers the result of
equation (9.13), i.e.,

K =

∫ 1

0

1√
(1 − ζ 2)(1 − k2ζ 2)

dζ.
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Remark 10.5. Upon making the substitutions

y B w2
1 −

1 + k2

3k2 , x B ku,

equation (10.30) can be written as (
dy
dx

)2

= 4y3 − g2y − g3, (10.31)

for appropriate constants g2 and g3. This ODE is important when considering the Weierstrass elliptic
function (see Section 10.4).

What other differential equations are satisfied by the Jacobi elliptic functions? Differentiation of the first
equation in equation (10.29) yields

d2

du2 snu = − snu dn2 u − k2 snu cn2 u,

which upon the manipulation of the identities in equation (10.24) yields that for y B snu,

d2y

du2 + (1 + k2)y − 2k2y3 = 0.

In a similar fashion one sees that y B cnu solves the ODE

d2y

du2 + (1 − 2k2)y + 2k2y3 = 0, (10.32)

and for y B dnu,
d2y

du2 + (k2 − 2)y + 2y3 = 0. (10.33)

It is interesting to note the relationship between equation (10.32) and equation (10.33). Upon setting
ỹ B ky equation (10.32) can be rewritten as

d2ỹ

du2 + (1 − 2k2)ỹ + 2ỹ3 = 0,

which now has the solution k cn(u). When considering the ODE

d2y

du2 + µy + 2y3 = 0, (10.34)

one then has the solutions
k1 cn(u; k1), dn(u; k2),

where
k2

1 B
1
2

(1 − µ), k2
2 B 2 + µ.

Note that the restriction 0 < kj < 1 implies that for k1 one requires −1 < µ < 1, whereas for k2 one requires
−2 < µ < −1. Hence, the solutions are complementary with respect to the parameter µ. Further note that
the rescalings u B αx and w B αy changes equation (10.34) to

d2w

dx2 + µ̃w + 2w3 = 0, µ̃ B α2µ,

so without loss of generality one can consider the parameter µ in equation (10.34) to be arbitrary.
Remark 10.6. The nonlinear second-order ODE

d2w

du2 = w3 + ew2 + fw, e, f ∈ C

can be transformed to equation (10.31). First multiply by w′ and integrate to get(
dw
du

)2

=
1
2
w4 +

2
3
ew3 + fw2 + g, g ∈ C,

and then set w = B(y), where B(·) is an appropriate bilinear transformation.
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10.3. General properties of elliptic functions

The periods of an elliptic function f (u) are often denoted by 2ω1 and 2ω3, with ω2 B −(ω1 + ω3). A
straightforward induction argument yields that 2mω1 + 2nω3 is also a period for m, n ∈ Z. It will be
henceforth assumed that 2ω1 and 2ω3 are fundamental periods, i.e., no submultiple of either is a period.
Furthermore, it shall be assumed that 2ω1 and 2ω3 are primitive periods, i.e., any other period is a sum of
multiples of these. It will be henceforth assumed any pair of primitive periods will have the property that
Im(ω3/ω1) > 0.
Example. cnu has primitive periods 2ω1 = 4K and 2ω3 = 2K + 2iK ′, while snu has primitive periods
2ω1 = 4K and 2ω3 = 2iK ′. Note that in each case

Im
(
ω3

ω1

)
=

1
2
K ′

K
> 0.

Now suppose that new periods are constructed via

ω′1 = aω1 + bω3, ω′3 = cω1 + dω3,

where a, b, c, d ∈ Z satisfy ad − bc = 1. Note that

ω1 = dω′1 − bω
′
3, ω3 = −cω′1 + aω′3;

furthermore, if ω3/ω1 = α + i� with � ∈ R+, then via a straightforward calculation

Im
(
ω′3
ω′1

)
=

�

(a + bα)2 + b2�2 > 0.

Consequently, the new periods are also primitive periods. For example, when considering cnu, new primitive
periods are given by

ω′1 = ω1 − ω3 = K − iK ′, ω′3 = ω3 = K + iK ′.

In conclusion, one has that primitive periods are not unique.
Now set Ωm,n B 2mω1 + 2nω3 for m, n ∈ Z, where ω1 and ω3 are primitive periods. A parallelogram

with vertices Ωm,n , Ωm+1,n , Ωm+1,n+1, and Ωm,n+1 is called a period parallelogram. Since Im(ω3/ω1) > 0, the
vertices are being listed in the counterclockwise sense. It is clear that once the values of an elliptic function
are known in one period parallelogram, then via periodicity they are known throughout C. Given a point
α ∈ C\{0}, one can translate the period parallelogram via

Ωi,j 7→ α + Ωi,j.

This new parallelogram will be known as a cell. By the proper choice of α, the poles and zeros of f (u) can
be made to lie in the interior of the cell (see Figure 13). This will facilitate much of the later analysis.
Example. Consider cnu with

2ω1 = 4K, 2ω3 = 2K + 2iK ′.

The “base" period parallelogram has vertices

Ω0,0 = 0, Ω1,0 = 4K, Ω1,1 = 6K + 2iK ′, Ω0,1 = 2K + 2iK ′.

The poles and zeros are given in equation (10.25) and equation (10.26). If one sets α B −iK ′/3, then all of
the zeros and poles will be contained within the interior of the “base" cell.

The poles of the Jacobi elliptic functions are given in equation (10.25). Since the zeros of θ4(z) are simple,
one has that the poles are simple. It is natural then to wonder as to the residue associated with each pole.
This question is specifically addressed in [9, Chapter 2.8]. It is a relatively straightforward, but tedious
calculation. Instead, we will consider more general questions. For example, for a given elliptic function and
given α ∈ C, how many solutions exist to f (u) = α for u in a given cell?
Definition 10.7. The order of an elliptic function is given by the number of poles within a particular cell.
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Remark 10.8. The Jacobi elliptic functions are each of order two. Since each pole is simple, differentiation
of a Jacobi elliptic function N times will yield an elliptic function of order 2N . We will later consider in detail
an elliptic function which is of order three.

Let f (z) be an elliptic function f (z) of order N , with the poles within a particular cell being denoted by
z = bj for j = 1, . . . , N . Let Ω represent the interior of a cell, and let the vertices be denoted by ABCD.
Consider the integral ∮

∂Ω
f (z) dz.

Since the values of f (z) are the same on both AB and DC, one has that∮
AB
f (z) dz =

∮
DC
f (z) dz

= −

∮
CD
f (z) dz.

Similarly, ∮
BC
f (z) dz = −

∮
DA
f (z) dz.

As a consequence, one has that ∮
∂Ω
f (z) dz = 0,

which implies by the residue theorem that

N∑
j=1

Resf (bj) = 0. (10.35)

As a consequence of the above argument, one has the following result.
Lemma 10.9. An elliptic function cannot have only one simple pole within a cell.

Proof: If there is only one simple pole at z = bj within a cell, then one clearly has that

1
2πi

∮
∂Ω
f (z) dz = Resf (bj) , 0.

However, this clearly violates the conclusion of equation (10.35). �

Now let α ∈ C be given, and consider g(z) B f (z) − α. As a consequence of the argument principal
Lemma 5.5 one has that

1
2πi

∮
∂Ω

g′(z)
g(z)

dz = M − N,

where M is the number of zeros of g(z) within Ω and N is the number of poles within Ω (counting multiplic-
ities). Using a periodicity argument as above, one can first conclude that∮

∂Ω

g′(z)
g(z)

dz = 0.

Hence, M = N , so that f (z) takes the value α the order N times within a cell. In particular, the number of
zeros within a cell is equal to the order of the function.
Lemma 10.10. Let f (z) be an elliptic function of order N , and let α ∈ C be given. There exist N solutions
(counting multiplicity) to f (z) = α in each cell.

Now consider
h(z) B

zf ′(z)
f (z)

,

along with the integral
1

2πi

∮
∂Ω
h(z) dz.
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Let the zeros of f (z) be denoted by aj, and let each have multiplicity mj, for j = 1, . . . , q. A simple calculation
shows that

Resh(aj) = mjaj.

If each of the poles b` have residues n` for j = 1, . . . , p, then one has that

Resh(bj) = −njbj.

Thus, by the residue theorem one has that

1
2πi

∮
∂Ω
h(z) dz =

q∑
j=1

mjaj −
p∑
`=1

n`b`.

Let the vertices be denoted by ζ, ζ + 2ω1, ζ + 2ω1 + 2ω3, and ζ + 2ω3. One then has that∮
∂Ω
h(z) dz = ω1

∫ 2

0
h(ζ + tω1) dt + ω3

∫ 2

0
h(ζ + 2ω1 + tω3) dt

− ω1

∫ 2

0
h(ζ + 2ω3 + tω1) dt − ω3

∫ 2

0
h(ζ + tω3) dt.

Upon using the periodicity properties of f (z) one then has that∮
∂Ω
h(z) dz = 2ω1ω3

∫ 2

0

f ′(ζ + tω3)
f (ζ + tω3)

dt − 2ω1ω3

∫ 2

0

f ′(ζ + tω1)
f (ζ + tω1)

dt

= (2ω1 ln{f (ζ + tω3)} − 2ω3 ln{f (ζ + tω1)}) |20
= 2πi(2rω1 + 2sω3), r, s ∈ Z.

The last line follows from periodicity, and the fact that logarithms of functions can differ only by integer
multiples of 2πi. Combining the above calculations then yields that

q∑
j=1

mjaj −
p∑
`=1

n`b` = 2rω1 + 2sω3; (10.36)

note that the right-hand side is simply a period of the elliptic function. Equation (10.36) provides a restriction
on the placement of zeros and poles for elliptic functions.
Lemma 10.11. Let f (z) be an elliptic function of order N with periods 2ω1 and 2ω3. For a given cell Ω, let
a1, . . . , aN ∈ Ω be the zeros, and let b1, . . . , bN ∈ Ω be the poles. One then has that

N∑
j=1

aj −
N∑
j=1

bj = 2rω1 + 2sω3

for some r, s ∈ Z.

10.4. Weierstrass’s elliptic function

Set

τ B
ω3

ω1
, Im τ > 0; u B 2πω1z; η1 B −

π2

12ω1

θ′′′1 (0)
θ′1(0)

,

and define
σ(u) B

2ω1

πθ′1(0)
eη1u2/2ω1θ1(z). (10.37)

Equation (10.37) defines the Weierstrass sigma function. One has that the choice of the constants yields

σ(0) = σ′′(0) = σ′′′(0) = 0, σ′(0) = 1.
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As a consequence of the properties of the theta function, one has that σ(u) is odd, entire, and has zeros
at u = 2mω1 + 2nω3, m, n ∈ Z. Finally, the quasi-periodicity of the theta function given in equation (10.7)
yields that

σ(u ± 2ω1) = −e2η1(u±ω1)σ(u), σ(u ± 2ω3) = −e2η3(u±ω3)σ(u), (10.38)

where η3 is defined via the relationship

η1ω3 − η3ω1 =
π

2
i.

Now define the Weierstrass zeta function via

ζ (u) B
d

du
ln σ(u)

(
=
σ′(u)
σ(u)

)
.

Differentiating equation (10.38) yields

σ′(u + 2ωj) = −e2ηj(u+ωj)(σ′(u) + 2ηjσ(u))

for j = 1,3; hence,
ζ (u + 2ωj) = ζ (u) + 2ηj. (10.39)

Since σ(u) is odd, ζ (u) is also odd. Upon putting u = −ωj one sees that

ζ (ωj) = ζ (−ωj) + 2ηj,

i.e., ζ (ωj) = ηj. Since the zeros of σ(u) are simple, ζ (u) has simple poles at u = 2mω1 + 2nω3, m, n ∈ Z, with
the Laurent expansion at u = 0 being given by

ζ (u) =
1
u

+

∞∑
j=0

aju
2j+1. (10.40)

If one differentiates equation (10.39) with respect to u, then the resulting function will be periodic with
periods 2ω1 and 2ω3; furthermore, it will have poles of order two at u = 2mω1 + 2nω3, m, n ∈ Z. Hence, the
resulting function is an elliptic function. Since ζ (u) is odd, the resulting function will be even.
Definition 10.12. The Weierstrass elliptic function is given by

℘(u) B −
d2

du2 ln σ(u).

Remark 10.13. One has that:

(a) The Laurent expansion at the pole u = 0 is given by

℘(u) =
1
u2 +

∞∑
j=0

aju
2j. (10.41)

This expansion is valid on D(0,min(2|ω1|,2|ω3|))\{0}.

(b) Since ℘(u) is an elliptic function of order two, it has two zeros within each cell.

(c) Differentiation of ℘(u) N times yields an elliptic function of order 2 + N ; furthermore, this new
function will have a pole of order 2 + N at u = 0.

(d) An alternative definition is given via

℘(u) =

(
π

2ω1

)2 (
1
3
θ′′′1 (0)
θ′1(0)

−
d2

dz2 ln θ1(z)
)
.
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10.4.1. Differential equation satisfied by ℘(u)

Define the other sigma functions via

σj(u) B e−ηju
σ(u + ωj)
σ(ωj)

, (10.42)

where ω2 and η2 are defined by the relations

3∑
j=1

ωj = 0,
3∑
j=1

ηj = 0.

Now set
ej B ℘(ωj), j = 1, . . . ,3.

One has that

e1 =
π2

6ω2
1
, e2 = e3 = −

π2

12ω2
1

[9, Chapter 6.6]. It can be shown [9, Chapter 6.7] that

℘(u) − ℘(v) =
σ(u + v)σ(v − u)
σ2(u)σ2(v)

. (10.43)

Upon making use of equation (10.42) one sees that

℘(u) − ej =
σ2
j (u)

σ2(u)
, j = 1, . . . ,3,

which implies that √
(℘(u) − e1)(℘(u) − e2)(℘(u) − e3) =

σ1(u)σ2(u)σ3(u)
σ3(u)

.

It can be shown [9, equation (6.4.4)] that

σ(2u) = 2σ(u)σ1(u)σ2(u)σ3(u),

which allows one to rewrite the above in the more compact form√
(℘(u) − e1)(℘(u) − e2)(℘(u) − e3) =

σ(2u)
σ4(u)

.

Finally, if in equation (10.43) one divides by (v − u) and uses the fact that σ′(0) = 1, then one sees that

℘′(u) = −
σ(2u)
σ4(u)

.

Thus, one has that ℘(u) satisfies the first-order ODE

y′ = −2
√

(y − e1)(y − e2)(y − e3). (10.44)

Note that as a consequence of equation (10.44) one has that ℘′(ωj) = 0 for j = 1, . . . ,3. As a consequence
of equation (10.41), u = 0 is a pole of order three for ℘′(u); furthermore, u = 0 is the only pole within the
cell. Since ℘′(u) is an elliptic function of order three, it is then known that z = ωj are the only zeros in the
particular cell.

Squaring both sides of equation (10.44) yields the equivalent ODE

(y′)2 = 4y3 − g1y
2 − g2y − g3, (10.45)

where
g1 B 4(e1 + e2 + e3), g2 B −4(e1e2 + e2e3 + e3e1), g3 B 4e1e2e3. (10.46)
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Upon considering the Laurent expansion of equation (10.41), one has that

℘′(u) = −
2
u3 +

∞∑
j=1

2jaju2j−1,

i.e.,
(℘′(u))2 =

4
u6 (1 − 2a1u

4 − 4a2u
6 + · · · ).

Since,
(℘(u))3 =

1
u6 (1 + 3a1u

4 + 3a2u
6 + · · · ), (℘(u))2 =

1
u4 (1 + 2a1u

4 + 2a2u
6 + · · · ),

substitution of these expressions into equation (10.45) and equating coefficients yields the relationships

g1 = 0, a1 =
1
20
g2, a2 =

1
28
g3.

Thus,
e1 + e2 + e3 = 0, ℘(u) =

1
u2 +

1
20
g2u

2 +
1
28
g3u

4 + O(u6), (10.47)

and ℘(u) satisfies the ODE
(y′)2 = 4y3 − g2y − g3. (10.48)

Note that ej are the roots of the cubic equation

4y3 − g2y − g3 = 0.

The quantities g2 and g3 are known as the invariants of ℘(u).
Remark 10.14. Since the Jacobi elliptic functions also satisfy equation (10.48) (see equation (10.31)), one
expects that there is a direct relationship between them and the Weierstrass elliptic function. Indeed there
is, and it is given by

snu = (℘(u) − e3)−1/2, cnu =

(
℘(u) − e1

℘(u) − e3

)1/2

, dnu =

(
℘(u) − e2

℘(u) − e3

)1/2

[9, Chapter 6.9]. Thus, the Weierstrass elliptic function can be thought of as a building block for the Jacobi
elliptic functions.

10.4.2. Partial fraction expansion of ℘(u)

Let ω1, ω3 ∈ C be given with Im(ω3/ω1) > 0, and for r, s ∈ Z set Ωrs B 2rω1 + 2sω3. Consider the function

f (u) B −2
∑
r,s

1
(u −Ωrs)3 .

It will first be shown that f (u) is holomorphic except at the poles u = Ωrs. For n ∈ N0 let Cn be a period
parallelogram with vertices ±(2n + 1)(ω1 + ω3) and ±(2n + 1)(ω1 − ω3). The points Ωrs lying between Cn−1
and Cn for n ∈ N all lie on a parallelogram which shall be denoted Γn. Suppose that u ∈ D, where D ⊂ C is
compact. There then exists an N such that D ⊂ int(Γn) for n ≥ N . For λ ∈ (0,1) and u ∈ D consider the circle

Cλ(u) B{z ∈ C : |u − z| = λ|z|}

={z ∈ C : |
1

1 − λ2 u − z| =
λ

1 − λ2 |u|}.

Since the circle collapses onto the point u as λ → 0+, there exists a λ > 0 such that Cλ(u) ∈ int Γn for any
n ≥ N and any u ∈ D. In particular, this implies that

|u −Ωrs| > λ|Ωrs|, Ωrs ∈ Γn , n ≥ N. (10.49)
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Let p > 0 be such that D(0, p) ⊂ C0 and ∂D(0, p) ∩ C0 , ∅. One has that for any Ωrs ∈ Γn , |Ωrs| ≥ 2np. There
are 8n such lattice points, so that upon summing over these points alone∑

rs

|Ωrs|
−3 < 8n(2np)−3 =

1
p3

1
n2 .

Thus, upon summing over the lattice points on Γn for n ≥ N and using equation (10.49) one has∑
rs

|u −Ωrs|
−3 < λ−3

∑
rs

|Ωrs|
−3 <

1
(λp)3

∞∑
n=N

1
n2 < ∞.

Since only a finite number of terms are being excluded in the above estimate, one then has that the series
associated with f (u) converges uniformly on D. Hence, f (u) is holomorphic except at the poles u = Ωrs.
Also note that f (u) is odd, and that f (u + 2ω1) = f (u + 2ω3) = f (u) (simply rearrange the ordering of the
summation), so that f (u) actually defines an elliptic function of order three.

Now consider
G(u) B f (u) − ℘′(u),

which is a doubly periodic function. Recalling the Laurent series for ℘(u) given in equation (10.47), one
has that G(u) has no poles, and is therefore uniformly bounded; hence, G(u) is a constant. Appealing to
equation (10.47), and using the fact that ∑

r,s

′ 1
Ω3
rs

= 0,

where
∑′
r,s indicates a summation which excludes (r, s) = (0,0), yields that G(0) = 0. Hence, one has that

℘′(u) = −2
∑
r,s

1
(u −Ωrs)3 . (10.50)

Now, as the convergence is uniform the series in equation (10.50) can be integrated term-by-term. Upon
doing so and evaluating at the end points 0 and u one gets that

℘(u) B
1
u2 +

∑
r,s

′
(

1
(u −Ωrs)2 −

1
Ω2
rs

)
+ A

for some A ∈ C. Following the same argument as in the preceding paragraph yields that A = 0. The following
result has now been proven.
Lemma 10.15. Let ω1, ω3 ∈ C be given with Im(ω3/ω1) > 0, and for r, s ∈ Z set Ωrs B 2rω1 + 2sω3. The
Weierstrass elliptic function is given by

℘(u) =
1
u2 +

∑
r,s

′
(

1
(u −Ωrs)2 −

1
Ω2
rs

)
.

10.4.3. Invariants expressed in terms of the periods

Unfortunately, the expression for ℘(u) given in Lemma 10.15 is not practical for computations, as the
series converges too slowly. However, recall that in Section 10.4.1 ℘(u) is defined as a solution to the ODE
equation (10.48). In order to use this formulation, one needs to know the invariants g2 and g3. In particular,
it would be beneficial to have them expressed in terms of the periods.

Recall the Laurent expansion given in equation (10.47). From that expansion one sees that

g2 = 10 lim
u→0

d2

du2

(
℘(u) −

1
u2

)
.

Now, from Lemma 10.15 one has that

℘(u) −
1
u2 =

∑
r,s

′
(

1
(u −Ωrs)2 −

1
Ω2
rs

)
,
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so that
d2

du2

(
℘(u) −

1
u2

)
= 6

∑
r,s

′ 1
(u −Ωrs)4 .

Evaluating the above at u = 0 and substituting above then gives

g2 = 60
∑
r,s

′ 1
Ω4
rs
. (10.51)

Similarly, one has that

g3 =
7
6

lim
u→0

d4

du4

(
℘(u) −

1
u2

)
, (10.52)

which upon following the above procedure yields

g3 = 140
∑
r,s

′ 1
Ω6
rs
.

Remark 10.16. Using the above idea, it can be shown that the Laurent expansion of ℘(u) at u = 0 is given
by

℘(u) =
1
u2 +

∞∑
j=1

c2ju
2j,

where

c2j = (2j + 1)
∑
r,s

′ 1
Ω

2j+2
rs

.

10.4.4. Expansions for ζ (u) and σ(u)

Recalling that

℘(u) = −
d

du
ζ (u),

one can use Lemma 10.15, and the fact that ζ (u) is odd with

lim
u→0

(
ζ (u) −

1
u

)
= 0,

(see equation (10.40)) to get that

ζ (u) =
1
u

+
∑
r,s

′
(

1
u −Ωrs

+
1

Ωrs
+

u

Ω2
rs

)
.

Recalling that

ζ (u) =
d

du
ln σ(u)

then yields that

ln σ(u) = lnu +
∑
r,s

′
(
ln

(
1 −

u

Ωrs

)
+

u

Ωrs
+

u2

2Ω2
rs

)
,

i.e.,

σ(u) = u
∏
r,s

′
(
1 −

u

Ωrs

)
exp

(
u

Ωrs
+

u2

2Ω2
rs

)
.
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10.5. Representation of general elliptic functions

10.5.1. Representation with theta functions

Let F (u) be an elliptic function of order N , and for a given cell let its zeros be given by uj and its poles be
given by vj for j = 1, . . . , N . As a consequence of Lemma 10.11 one has that

N∑
j=1

(uj − vj) = 2rω1 + 2sω3, r, s ∈ Z.

It is possible to choose the zeros and poles by congruent points in the lattice so that r = s = 0; henceforth,
it will be assumed that this has been done. Set z B πu/2ω1, so that now F (z) will have the periods π and
τπ, where τ B ω3/ω1. Let the zeros now be given by zj, and the poles by pj, and note that

∑
zj =

∑
pj.

Now set

Θ(z) B
N∏
j=1

θ1(z − zj)
θ1(z − pj)

.

Since θ1(0) = 0, one has that Θ(z) has zeros at zj and poles at pj. Furthermore, as a consequence of
equation (10.7), and using the fact that θ1(z) is π-periodic, one has that

Θ(z + π) = Θ(z)

Θ(z + τπ) = exp{2i(
∑

zj −
∑

pj)}Θ(z)

= Θ(z).

The last line follows from the fact that
∑
zj =

∑
pj. Hence, Θ(z) is an elliptic function with the same zeros,

poles, and periods as F (2ω1z/π). Finally, set

Φ(z) B
F (2ω1z/π)

Θ(z)
.

One has that Φ(z) is an elliptic function with no poles, and hence it must be a constant. Thus, one has that

F (2ω1z/π) = AΘ(z), A ∈ C.

For a first example, consider F (u) = snu. One has that ω1 = 2K and ω3 = iK ′, and the zeros and poles
are given by 0,2K and iK ′,2K − iK ′, respectively. Thus,

z1 = 0, z2 =
1
2
π; p1 =

1
2
τπ, p2 =

1
2
π(1 − τ),

so that

snu = A
θ1(z) θ1(z − 1

2π)

θ1(z − 1
2 τπ) θ1(z − 1

2π(1 − τ))
.

The constant A can be determined by using the facts that

d
du

snu|u=0 = 1,
du
dz

=
4K
π
,

which yields

A = −
4K
π

θ1( 1
2 τπ) θ1( 1

2π(1 − τ))

θ′1(0) θ1( 1
2π)

.

For a second example, consider F (u) = ℘′(u). One has a pole of order three at u = 0, and simple zeros
at ω1, ω3, and −(ω1 + ω3). Consequently,

z1 =
π

2
, z2 =

π

2
τ, z3 = −

π

2
(1 + τ); p1 = p1 = p3 = 0,
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so that

℘′(u) = A
θ1(z − π/2) θ1(z − πτ/2) θ1(z + π(1 + τ)/2)

θ3
1(z)

=
θ1

[
π(u − ω1)/2

]
θ1

[
π(u − ω3)/2

]
θ1

[
π(u + ω1 + ω3)/2

]
θ3

1
[
πu/2

] .

10.5.2. Representation in terms of ℘(u)

Before we look at the representation of elliptic functions in terms of the Weierstrass functions, we must
first collect a few facts about even and odd elliptic functions. This may appear to be a restriction to special
cases. However, upon recalling that any function G(u) can be written as

G(u) = Ge(u) + Go(u), (10.53)

where
Ge(u) B

1
2

(G(u) + G(−u)), Go(u) B
1
2

(G(u) − G(−u)),

are such that Ge(u) is even and Go(u) is odd, one immediately sees that the special cases actually take into
account all functions.

Suppose that an elliptic function F (u) is odd, and suppose that u = ω1 is not a pole. One then has
that F (−ω1) = −F (ω1); furthermore, since 2ω1 is a period one has that F (−ω1) = F (ω1). Hence F (ω1) = 0;
similarly F (ω2) = F (ω3) = 0. One then can conclude that the midlattice and lattice points of an odd elliptic
function are zeros if they are not poles. If α ∈ C is a lattice or midlattice point which is a zero of order
m, then it is not a zero of the elliptic function F (m)(u). By the above reasoning one concludes that F (m)(u)
cannot be an odd elliptic function, which implies that m must be odd. Similarly, if one considers α ∈ C to
be a pole of order m, than by examining the odd elliptic function 1/F (u) one immediately concludes that m
is again odd. Thus, all poles and zeros at midlattice and lattice points must be of odd order.

Suppose that F (u) is an even elliptic function. The midlattice and lattice points must no longer neces-
sarily be zeros or poles. However, if one assumes that they are, then by arguing in a manner similar to
above one sees that they must be a zero or pole of even order. Choose a cell Ω for which F (u) has no zeros
or poles on ∂Ω. If α ∈ Ω is a zero, then since F (u) is even one has that −α is a zero. By periodicity one than
has that the point congruent to −α within Ω, i.e., −α 7→ 2rω1 + 2sω3 − α for some r, s ∈ Z, is also a zero.
Thus, the zeros within Ω can be arranged in pairs, which will be distinct unless α = 2rω1 + 2sω3 − α. In
this case one has that α = rω1 + sω3, which means that α is either a midlattice point or lattice point. From
the above it is known that this zero must be of even order. Hence, the total number of zeros within a cell is
even, which implies that F (u) is an elliptic function of even order.
Proposition 10.17. If F (u) is an even elliptic function, then it is of even order.
Remark 10.18. Proposition 10.17 has no analogue for odd elliptic functions. For example, snu is an odd
elliptic function of order two, whereas ℘′(u) is an odd elliptic function of odd order.

Supposes that F (u) is even, of order 2N , and has no zero or pole at a lattice point. Following the above
reasoning, for a given cell choose an irreducible set of zeros uj and poles vj for j = 1, . . . , N , and consider the
function

G(u) B
N∏
j=1

℘(u) − ℘(uj)
℘(u) − ℘(vj)

.

One has that G(u) is periodic with periods 2ω1 and 2ω3, and has no pole at any lattice point. Furthermore,
by supposition G(u) is nonzero at any lattice point. Now, recall that ℘(u) is even and of order two; hence,
if uj is not a midlattice point, ℘(u) − ℘(uj) has a simple zero at ±uj; otherwise, the function has a double
zero at uj. Consequently, G(u) has the same zeros as F (u) with the same multiplicities. Similarly, it has the
identical number of poles as F (u) with the same multiplicities. Thus, F (u)/G(u) is an elliptic function with
no poles, and is hence constant. One then has that

F (u) = A
N∏
j=1

℘(u) − ℘(uj)
℘(u) − ℘(vj)

.
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Now suppose that F (u) has a zero of order 2n at each lattice point. Upon setting

G(u) B

∏N−n
j=1 ℘(u) − ℘(uj)∏N
j=1 ℘(u) − ℘(vj)

,

one sees that G(u) has a zero of order 2n at each lattice point. Arguing as above, one then sees that

F (u) = A

∏N−n
j=1 ℘(u) − ℘(uj)∏N
j=1 ℘(u) − ℘(vj)

. (10.54)

Finally, if F (u) has a pole of order 2n at each lattice point, then by a similar reasoning one finally sees that

F (u) = A

∏N
j=1 ℘(u) − ℘(uj)∏N−n
j=1 ℘(u) − ℘(vj)

.

In all cases, one has that
F (u) = P(℘(u)),

where P(·) is a rational function.
If one supposes that F (u) is odd, then one has that the function F̃ (u) B F (u)/℘′(u) is even. Arguing as

above one then sees that
F (u) = ℘′(u)Q(℘(u)),

where Q(·) is a rational function. Finally, suppose that F (u) is an arbitrary elliptic function. Upon using
equation (10.53) one sees that

F (u) = P(℘(u)) + ℘′(u)Q(℘(u)).

The following has now been proved.
Lemma 10.19. Suppose that F (u) is an elliptic function with periods 2ω1 and 2ω3. There exist rational
functions P and Q such that

F (u) = P(℘(u)) + ℘′(u)Q(℘(u)).

For an example, consider F (u) = snu. The periods are given by

ω1 = 2K, ω3 = iK ′;

hence, the lattice points are given by 2rω1 + 2sω3, r, s ∈ Z. Modulo the lattice points, an irreducible set
of simple zeros is {0, ω1}, and an irreducible set of simple poles is {ω3, ω1 + ω3}. Now, ℘′(u) has a triple
pole at u = 0, and simple zeros at the midlattice points ω1, ω3, and ω1 + ω3. It then follows that the even
function snu/℘′(u) has a zero of order four at u = 0, and a pair of double poles at v1 B ω3 and v2 B ω1 +ω3.
Application of equation (10.54) then yields

snu
℘′(u)

=
A

(℘(u) − ℘(v1))(℘(u) − ℘(v2))
.

Upon setting
e1 B ℘(ω1), e2 B ℘(ω1 + ω3), e3 B ℘(ω3),

the above can be rewritten as
snu
℘′(u)

=
A

(℘(u) − e2)(℘(u) − e3)
.

Upon applying equation (10.44) and simplifying one then gets that

snu = Ã
℘(u) − e1

℘′(u)
.

Upon expanding about u = 0 and using the facts that

snu = u + · · · ; ℘(u) =
1
u2 + · · · ,

one sees that Ã = −2; hence,

snu = −2
℘(u) − e1

℘′(u)
.
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10.6. Applications

Here we will consider problems which naturally arise in physical applications, and demonstrate the
manner in which the above theory yields solutions to the governing equations.

10.6.1. The simple pendulum

The equation governing the motion of a simple planar pendulum is given by

θ̈ + sin θ = 0.

Here time has been appropriately normalized in order to absorb the gravitational constant g and the length
of the pendulum `. The system has a first integral given by

E(θ, θ̇) B −
1
2
θ̇2 + cos θ,

i.e., Ė = 0 [12, Chapter 2]. Upon setting

x B
1
k

sin
θ

2
, k2 B

1
2

(1 − E)

it is eventually seen that
ẋ2 = (1 − x2)(1 − k2x2).

Comparison with equation (10.30) then yields the solution to be x(t) = sn(t; k), i.e.,

θ(t) = 2Sin−1(k sn(t; k)),

with the period being given by 4K, where

K =

∫ 1

0

1√
(1 − ζ 2)(1 − k2ζ 2)

dζ.

Note that the period depends upon the energy, and that

lim
E→−1+

K = +∞, lim
E→1−

K =
π

2
.

In the second case the motion of the pendulum is well approximated by the linear system

θ̈ + θ = 0.

10.6.2. The spherical pendulum

The following example can be found in [11, Chapter III.5.27]. Using cylindrical coordinates, the total
energy associated with a spherical pendulum is given by

E B
1
2

(ṙ2 + r2θ̇2 + ż2) + gz,

where g represents the acceleration due to gravity. If ` represents the length of the pendulum, then one has
that

r2 = `2 − z2.

The angular momentum about the z-axis must be conserved, which implies that

r2θ̇ = C, C ≥ 0. (10.55)
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If C = 0, then the motion becomes that of a simple planar pendulum, which was studied in the previous
subsection. As such, it will be henceforth assumed that C > 0. Substitution of the above two identities into
that for E yields

z2ż2

`2 − z2 +
C2

`2 − z2 + ż2 = −2gz + h, h B 2E,

i.e.,
`2ż2 = (h − 2gz)(`2 − z2) − C2 B q(z), (10.56)

where q(z) is a polynomial of degree three.
If z0 ∈ (−`, `) is the coordinate of the pendulum at t = 0, then one must have that q(z0) ≥ 0; otherwise,

the initial velocity would not be real-valued. Since

q(±∞) = ±∞, q(±`) = −C2 < 0, q(z0) ≥ 0,

one can conclude that the zeros of q(z) are all real. Assuming that q(z0) > 0, each zero is necessarily
distinct. Label the zeros zj such that

−` < z3 < z0 < z2 < ` < z1.

By uniqueness of solutions to ODEs the coordinate z now satisfies the constraint z ∈ [z3, z2] for all time.
Now set

z B au + b; a B
2`2

g
, b B

h

6g
. (10.57)

Upon using this transformation equation (10.56) becomes

u̇2 = 4u3 − g2u − g3, (10.58)

and the zeros are now given by

ej B
zj − b

a
, j = 1, . . . ,3,

and satisfy e1 > e2 > e3. Moreover, u ∈ [e3, e2] for all time.
Consider the ODE

(y′)2 = 4y3 − g2y − g3,
′ B

d
dτ
,

where g2 and g3 are as above. It was seen in equation (10.48) that the solution is given by the Weierstrass
elliptic function ℘(τ) with fundamental periods 2ω1 and 2ω3, where g2 and g3 are related to the periods via
equation (10.51) and equation (10.52), respectively. Since the zeros are real and distinct, it can be shown
that ω1 = α and ω3 = i�, where α, � ∈ R+ are given by

α =

∫ +∞

e1

1√
4x3 − g2x − g3

dx, � =

∫ e3

−∞

1√
−4x3 + g2x + g3

dx

[11, Chapter III.5.24].
If one sets τ = t + i�, where t ∈ R, then one has that

u(t) = ℘(t + i�)

is a solution to equation (10.58) which is of period 2α. Note that as a consequence of [11, Lemma III.22.2]
that this solution is real-valued for all t ∈ R. Furthermore, this solution has no singularities for t ∈ R, as its
poles are given by tp = 2rα + i(2s + 1)� for r, s, ∈ Z. Finally, as is seen in [11, Theorem 5.6] one has that

u(0) = e3, u(α) = e2.

Thus, the solution u(t) is 2α-periodic and achieves its maximum values at t = (2j + 1)α and its minimum
values at t = 2jα for j ∈ Z (see [11, Figure III.5.4]). Upon using equation (10.57) one finally sees that

z(t) = au(t) + b = a℘(t + i�) + b, (10.59)
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i.e., the solution to equation (10.56) is given by an elliptic function.
Now, r(t) =

√
`2 − z2(t) is also an elliptic function of real period 2α. In order to solve for θ(t), one uses

equation (10.55) to get

θ̇ =
C

r2 =
C

`2 − z2 .

In other words,

θ(t) = θ0 + C

∫ t

0

1
`2 − z2(s)

ds.

It is periodic with period 2α if and only if

θprec B C

∫ 2α

0

1
`2 − z2(s)

ds = 0 (mod 2π);

otherwise,
θ(t + 2α) = θ(t) + θprec.

It can eventually be shown that
e2i(θ−θ0) = eiµtF (t),

where µ ∈ C is constant and F (t) is an elliptic function with periods 2α and 2i� (see [11, equation (III.5.79)]).
Generically one will have that

µ , 0 (mod
π

α
),

so that θprec , 0.

11. Asymptotic evaluation of integrals

The source material for this section is [1, Chapter 6]. A good supplemental source is [2]. One motivation
for understanding the material in this text is that in practice one often must evaluate integrals of the form

I(ϸ) B
∫ +∞

−∞

f (x)eix/ϸ dx, 0 < ϸ � 1.

It is known via the Riemann-Lebesgue lemma that under the condition that f ∈ L1(R), which is defined
below, then

lim
ϸ→0+

I(ϸ) = 0.

However, the result does not indicate the size of I(ϸ) as ϸ → 0+. For example, it can be shown that∫ +∞

−∞

sin((x − ξ )/ϸ) sech2 x dx = −
π

ϸ sinh(π/2ϸ)
sin(ξ/ϸ)

= −
2π
ϸ

e−π/2ϸ sin(ξ/ϸ) + O(e−π/ϸ);

hence, the integral has an expansion which is in composed only of exponentially small terms. Furthermore,
the fact that the error terms in the second line can be uniformly bounded arises from the fact an explicit
expression is known for the integral. The above integral was computed using standard contour integration
techniques. It will be of interest to compute I(ϸ) when the techniques are no longer applicable.

11.1. Fourier and Laplace transforms

Let
Lp(R) B {f ∈ C0(R) : ‖f ‖pp B

∫
R

|f (x)|p dx < ∞}.
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For f ∈ L1(R) ∩ L2(R) and k ∈ R define the Fourier transform of f (x) to be

f̂ (k) B
∫ +∞

−∞

f (x)e−ikx dx. (11.1)

It can be shown that the inverse Fourier transform satisfies

f (x) =
1

2π

∫ +∞

−∞

f̂ (k)eikx dk.

It is clear that for each k ∈ R
|f̂ (k)| ≤ ‖f ‖1;

hence, the Fourier transform is well-defined.
The utility of the Fourier transform in solving differential equations follows from the following set of facts.

First, suppose that f ∈ L2(R), and that lim|x |→∞ |f (x)| = 0. Set

f̂j(k) B
∫ +∞

−∞

f (j)(x)e−ikx dx.

First note that upon integrating by parts,

f̂1(k) =

∫ +∞

−∞

f ′(x)e−ikx dx

= f (x)e−ikx
∣∣∣+∞
−∞

+ ik
∫ +∞

−∞

f (x)e−ikx dx

= ikf̂ (k).

An induction argument then immediately yields that

f̂j(k) = (ik)j f̂ (k). (11.2)

This formal argument can be made rigorous (see [7, Theorem 4.3.2]).
As a consequence of linearity one has that for

g(x) B
N∑
j=0

aj
djf
dx j

, aj ∈ C,

the associated Fourier transform satisfies

ĝ(k) =

 N∑
j=0

aj(ik)j
 f̂ (k).

Upon applying the Fourier transform to the differential equation

N∑
j=0

aj
djf
dx j

= h(x),

one sees that the Fourier transform of the solution satisfies

f̂ (k) =
ĥ(k)
p(k)

, p(k) B
N∑
j=0

aj(ik)j.

The polynomial p(·) is known as the symbol associated with the differential equation.
Now consider the convolution product

(f ∗ g)(x) B
∫ +∞

−∞

f (s)g(x − s) ds.
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Applying the Fourier transform to the convolution yields∫ +∞

−∞

(f ∗ g)(x)e−ikx dx =

∫ +∞

−∞

(∫ +∞

−∞

f (s)g(x − s) ds
)

e−ikx dx

=

∫ +∞

−∞

f (s)e−iks
∫ +∞

−∞

g(x − s)e−ik(x−s) ds dx

= f̂ (k)ĝ(k);

hence, the Fourier transform of a convolution is the product of the Fourier transforms. This then implies
that the solution to the above ODE is given by

f (x) = (p ∗ h)(x),

where

p(x) =
1

2π

∫ +∞

−∞

1
p(k)

eikx dk.

Now, note that the inverse transform of the product satisfies

1
2π

∫ +∞

−∞

f̂ (k)ĝ(k)eikx dk =

∫ +∞

−∞

f (s)g(x − s) ds.

If one sets g(x) B f (−x) in the above, then upon evaluating at x = 0 one sees that∫ +∞

−∞

|f (s)|2 ds =
1

2π

∫ +∞

−∞

f̂ (k)ĝ(k) dk.

Since

ĝ(k) =

∫ +∞

−∞

f (−x)e−ikx dx

=

∫ +∞

−∞

f (x)eikx dx

= f̂ (k),

the above can be refined to read ∫ +∞

−∞

|f (s)|2 ds =
1

2π

∫ +∞

−∞

|f̂ (k)|2 dk. (11.3)

Equation (11.3) is the Parseval formula.
A particular extension of the Fourier transform, known as the Laplace transform, can be constructed in

the following manner. Suppose that f (x) ≡ 0 for x < 0. For c ∈ R+ one has that

e−cx f (x) =
1

2π

∫ +∞

−∞

(∫ +∞

0
e−ct f (t)e−ikt dt

)
eikx dk,

so that

f (x) =
1

2π

∫ +∞

−∞

(∫ +∞

0
e−(c+ik)t f (t) dt

)
e(c+ik)x dk.

Setting s B c + ik then yields

f (x) =
1

2πi

∫ c+i∞

c−i∞

(∫ +∞

0
e−st f (t) dt

)
esx ds.

The Laplace transform is then given by

f̂ (s) B
∫ +∞

0
e−sx f (x) dx, (11.4)
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and the inverse Laplace transform is

f (x) =
1

2πi

∫ c+i∞

c−i∞
f̂ (s)esx ds.

The utility of the Laplace transform in solving differential equations is that∫ +∞

0
e−sx f (n)(x) dx = sn f̂ (s) − f (n−1)(0) − sf (n−2)(0) − · · · − sn−1f (0);

hence, in a manner similar to that of the Fourier transform, a differential equation can be transformed into
an algebraic equation for the transform f̂ (s). From this perspective, the primary difference between the two
transforms is that the Laplace transform requires the initial data in order to solve the differential equation,
whereas the Fourier transform does not. It is also useful to know that for

h(x) B
∫ x

0
f (s)g(x − s) ds,

the Laplace transform is given by
ĥ(s) = f̂ (s)ĝ(s).

This last fact will be useful when solving nonhomogeneous ordinary differential equations via the Laplace
transform.

11.2. Applications of transforms to differential equations

The heat equation is given by
∂φ

∂t
=
∂2φ

∂x2 , φ(x,0) = h(x).

Let φ̂ represent the Fourier transform of the solution. One then has that for each k ∈ R, φ̂ satisfies the ODE

dφ̂
dt

= −k2φ̂, φ̂(k,0) = ĥ(k).

The solution is given by
φ̂(k, t) = e−k

2t ĥ(k).

Letting G(x, t) represent the inverse Fourier transform of e−k
2t , one then has that the solution is given by

φ(x, t) = G(x, t) ∗ h(x) =

∫ +∞

−∞

G(x − ξ, t)h(ξ ) dξ.

Now let us determine G(x, t), which is known as the Green’s function. Upon using the definition one has
that

G(x, t) =
1

2π

∫ +∞

−∞

e−k
2teikx dk

=
1

2π

∫ +∞

−∞

e−x
2/4te−(k−ix/2t)2t dk

=
1

2
√
πt

e−x
2/4t .

The last line follows from the fact that
∫
R

e−u
2

du =
√
π. Hence, the solution is given by

φ(x, t) =
1

2
√
πt

∫ +∞

−∞

e−(x−ξ )2/4th(ξ ) dξ.
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For example, if h(x) = δ(x − x0), where δ(·) represents the Dirac delta function, then

φ(x, t) =
1

2
√
πt

e−(x−x0)2/4t .

Thus, even though the initial data is nonzero at only one point, for every t > 0 the solution is nonzero for all
x ∈ R. The heat equation then supports an infinite speed of propagation of initial data.
Remark 11.1. The above solution can also be found via the Laplace transform. The interested student is
directed to [1, Chapter 4.6] for the details.

Now consider the wave equation
∂2φ

∂x2 −
1
c2
∂2φ

∂t2
= f (x)eiωt .

Here c > 0 represents the speed of propagation of the unforced wave, and the forcing is assumed to be
periodic in time with a constant frequency. Note that a real solution is obtained by taking the real part of
φ, and that this simply corresponds to the forcing f (x) cosωt. Setting φ(x, t) B Φ(x)eiωt yields that

d2Φ

dx2 +

(ω
c

)2
Φ = f (x),

which upon using the Fourier transform has the solution

Φ(x) = H(x, ω/c) ∗ f (x),

where

H(x, ω/c) = −
1

2π
P.V.

∫ +∞

−∞

eikx

k2 − (ω/c)2 dk.

In computing the above integral, the standard choice is to specify that the portion of the contour on the real
axis be indented below the pole k− B −ω/c and above the pole k+ B +ω/c. Upon noting that

Resf (k±) =
1
2

eik±x

k±
,

one then gets that

H(x, ω/c) = i
e−iω|x |/c

2(ω/c)
.

In conclusion one then has that the solution is given by

φ(x, t) = Re
(

i
2(ω/c)

∫ +∞

−∞

eiω(t−|x−ξ |/c)f (ξ ) dξ
)
.

For example, if f (x) = δ(x − x0), then the solution is given by

φ(x, t) = −
1

2(ω/c)
sinω(t − |x − x0|/c).

Thus, a forcing at only one point yields a sinusoidal response from the medium, with the solution being
constant along the rays

ct − |x − x0| = C, C ∈ R.

Remark 11.2. It is an exercise for the student to determine the relationship between the function H(x, ω/c)
and the different choices for the contour of integration.

As a final example, consider
∂u

∂t
+
∂3u

∂x3 = 0, u(x,0) = f (x).

Here u(x, t) represents the small amplitude vibrations of a continuous medium such as water waves. Letting
û(k, t) represent the Fourier transform of u(x, t), one sees that

∂û

∂t
− ik3û = 0, û(k,0) = f̂ (k),
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which has the solution
û(k, t) = f̂ (k)eik3t .

Upon inversion one then has that

u(x, t) =
1

2π

∫ +∞

−∞

ei(kx+k3t) f̂ (k) dk.

The above solution can be viewed as a superposition of waves of the form

ei(kx−ω(k)t), ω(k) B −k3.

Here ω(k) is known as the dispersion relation associated with the PDE. Unfortunately, one cannot find an
explicit representation for the solution u(x, t) beyond what is given above. However, one can use asymptotic
methods, such as the method of stationary phase and the method of steepest descent, to approximate the
solution as t → +∞. It turns out that the major contribution to the integral defining the solution is found
near the location where for the phase Ψ B kx − ω(k)t one has ∂Ψ/∂k = 0, i.e., ω′(k) = x/t. The quantity
ω′(k) is known as the group velocity, and it represents the speed of a packet of waves centered around the
wave number k. For x/t > 0 one has that the solution decays exponentially. For x/t < 0 one can show that
for particular constants c, φj ∈ R,

u(x, t) ≈
c
√
t

 2∑
j=1

f̂ (kj)√
|kj |

ei(kjx−ω(kj)t+φj)

 ; k1 B

√
−
x

3t
, k2 B −

√
−
x

3t
.

Hence, the solution still decays, except now it does so only at the rate t−1/2.
Finally, consider the limit x/t → 0, i.e., the transition region between the above two solution behaviors.

The above solution can be rearranged and put into the self-similar form

u(x, t) ≈
d

(3t)1/3
A(x/(3t)1/3),

where A(·) is the solution to Airy’s equation

d2A

dz2 − zA = 0, lim
z→+∞

A(z) = 0.

The solution to Airy’s equation is given by

A(z) =
1

2π

∫ +∞

−∞

ei(kz+k3/3) dk.

It can be shown that A(z) decays exponentially fast as z → +∞, and has oscillatory behavior and decays
like |z|−1/4 as z → −∞ (see [1, Figure 4.6.2] for a depiction of the wave form).
Remark 11.3. One interpretation of the above asymptotic solution is that the solution decays exponentially
fast when travelling faster than the group velocity, and oscillates and decays very slowly when travelling
slower than the group velocity. When travelling at the speed of group velocity, the solution is governed by a
self-similar solution to Airy’s equation.

11.3. Laplace type integrals

Recalling the definition of the Laplace transform in equation (11.4), we shall first consider

lim
k→+∞

I(k) B
∫ b

a
f (t)e−kφ(t) dt, (11.5)

where f, φ ∈ C1(R).
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11.3.1. Integration by parts

In order to better understand the relevant issues regarding the asymptotic expansions of integrals,
consider

I(x) B xexE(x), E(x) B
∫ +∞

x

e−t

t
dt,

for x ∈ R+. It is clear that I(x) is well-defined for each x ∈ R+; furthermore, upon applying L’Hospital’s rule
one sees that

lim
x→0+

I(x) = 0, lim
x→+∞

I(x) = 1.

It turns out that I(x) has the expansion

I(x) = xex
− ln x − γ +

∞∑
j=1

(−1)j+1 x j

j · j!

 ,
where γ is the Euler constant [2, equation (1.1.5)]. The expansion is clearly valid for all x ∈ R+. Unfortu-
nately, it the rate of convergence for x ≥ 10 is very slow; for example, in order to compute I(10) accurate
to three significant figures, one must take over 40 terms in the expansion. Hence, this expansion is not of
much practical use in computing I(x) for x � 1.

As a consequence, it is natural to seek an expansion about x = +∞. If one integrates by parts N times,
then one sees that

I(x) =

N−1∑
j=1

(−1)j
j!
x j

+ E(x, N),

where

E(x, N) B (−1)NN!xex
∫ +∞

x

e−t

tN+1 dt.

It is natural to first attempt to write

I(x) =

∞∑
j=1

(−1)j
j!
x j
.

However, it is quickly seen that the sum diverges for all finite values of x, and hence it is of no value.
Therefore, one can approximate I(x) only with the finite sum, with the understanding that there will be
some error with this approximation. Since

|E(x, N)| ≤
N!
xN
,

one has that for fixed N, E(x, N) → 0 as x → +∞. Note that the control of the error is not uniform. Indeed,
if ϸ > 0 is given, then one requires that x > (N!/ϸ)1/N in order to achieve |E(x, N)| < ϸ. Since

lim
N→+∞

(N!)1/N = +∞,

in order to achieve the desired accuracy one must carefully exploit the interplay between the size of ϸ and
the size of N . For example, in order to compute I(10) accurate to three significant figures using the above
formulation, one needs that N = 10. However, no value of N will yield a result accurate to four significant
figures! For another example, in order to compute I(100) accurate to five significant figures, one needs only
that N = 4.

In conclusion, it is seen that by using the method of integration by parts to derive an asymptotic
expansion, one derives a divergent series. However, the partial sums are still quite useful in approximating
the original function. All that must be kept in mind is that the error associated with the approximation is
not uniform in x; hence, if one wishes to choose a large value of N , then one must choose x > x∗(N), where
x∗(N)→ +∞ as N → +∞.

Upon using the above example as a mathematical guide, we have the following general lemma concerning
the method of integration by parts. Note that we first consider I(k) defined in equation (11.5) with φ(t) ≡ t.
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Lemma 11.4. Consider I(k) defined in equation (11.5) with φ(t) ≡ t. If b = +∞, then suppose that |f (t)| =
O(eαt) for some α ∈ R+. If f ∈ CN+2(R), then

I(k) ∼ e−ka
N∑
j=0

f (j)(a)
kj+1 , k → +∞.

Proof: An integration by parts yields

I(k) = e−ka
N∑
j=0

f (j)(a)
kj+1 − e−kb

N∑
j=0

f (j)(b)
kj+1 + EN (k),

where

EN (k) B
1

kN+1

∫ b

a
e−kt f (N+1)(t) dt.

Since b > a, the second sum is negligible in the estimate as it is of O(e−(k−α)b); hence, it can be ignored.
Concerning the error term one has that upon another integration by parts,

EN (k) =
1

kN+2 (e−kaf (N+1)(a) − e−kbf (N+1)(b)) + EN+1(k).

Thus, as k → +∞ one has that |EN (k)| = O(e−(k−α)a/kN+2), which again is asymptotically negligible. In
conclusion one has that

I(k) = e−ka
N∑
j=0

f j(a)
kj+1 + O

(
e−(k−α)a

kN+2

)
+ O

(
e−(k−α)b

)
,

which is the desired result. �

For an example, consider

lim
ϸ→0+

I(ϸ) B
∫ +∞

0
(1 + ϸt)−1e−t dt.

Note that the integral is well-defined for each ϸ ≥ 0. If one sets τ B ϸt, then one sees that

I(ϸ) =
1
ϸ

∫ +∞

0
(1 + τ)−1e−τ/ϸ dτ,

which is in the framework of Lemma 11.4 with f (τ) = (1 + τ)−1. Since f (j)(0) = (−1)jj! for each j ∈ N0, one has
that

I(ϸ) ∼
N∑
j=0

(−1)jj!ϸj, ϸ → 0+.

Note that the series is divergent as N → +∞, even thought f (·) is holomorphic for Re z > −1.

11.3.2. Watson’s lemma

If f (t) is integrable at t = a, but is not sufficiently smooth, i.e., f (t) ≈ (t − a)−1/2 for 0 < t − a � 1, then
Lemma 11.4 is not applicable. Thus, we need another method to evaluate integrals with integrands of this
type. In what follows we need to recall that for z ∈ D(0,1),

(1 + z)α =

∞∑
j=0

cj(α)zj, cj(α) B
Γ(1 + α)

Γ(1 + j)Γ(1 + α − j)
. (11.6)

For example,
1

√
t2 + 2t

=
1
√

2t

∞∑
j=0

cj(−
1
2

)
( t
2

)j
, t ∈ D(0,2). (11.7)
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Lemma 11.5 (Watson’s Lemma). Consider I(k) defined in equation (11.5) with a = 0 and φ(t) ≡ t. Let
f ∈ C(R+) satisfy |f (t)| = O(ect) for some c ∈ R+. Furthermore, suppose that for t ∈ D(0, R) one has that

f (t) ∼ tα
∞∑
j=0

ajt
�j; α > −1, � > 0.

Then

I(k) ∼
∞∑
j=0

aj
Γ(1 + α + �j)
k1+α+�j

, k → +∞.

Proof: Set I(k) = I1(k) + I2(k), where

I1(k) B
∫ R

0
f (t)e−kt dt, I2(k) B

∫ b

R
f (t)e−kt dt.

Under the assumption on f (t) one can easily compute that

I2(k) = O(
e−kR

k
), k → +∞;

hence, the contribution from this term is negligible. Now consider the term I1(k). First, by the definition of
the gamma function one has that ∫ +∞

0
tα+�je−kt dt =

Γ(1 + α + �j)
k1+α+�j

;

thus, ∫ R

0
tα+�je−kt dt =

∫ +∞

0
tα+�je−kt dt −

∫ +∞

R
tα+�je−kt dt

=
Γ(1 + α + �j)
k1+α+�j

+ O(
e−kR

k
), k → +∞.

The estimate on the second integral follows from an integration by parts. Since

I1(k) =

∫ R

0

 N∑
j=0

ajt
α+�j + O(tα+�(N+1))

 e−kt dt,

and ∫ R

0
tα+�(N+1)e−kt dt ≤

∫ +∞

0
tα+�(N+1)e−kt dt

=
Γ(1 + α + �(N + 1)

k1+α+�(N+1) ,

one has that for each N ∈ N,

I1(k) =

N∑
j=0

aj
Γ(1 + α + �j)
k1+α+�j

+ O(k−(1+α+�(N+1))), k → +∞.

The result now follows. �

Remark 11.6. Note that the asymptotic behavior of I(k) is again determined by the behavior of f (t) at t = 0.
For an example, consider the modified Bessel equation of order p, which is given by

k2 d2w

dk2 − k
dw
dk
− (k2 + p2)w = 0.
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It can be shown that a solution with p = 0 is given by w(k) = e−kI(k), where

I(k) =

∫ +∞

0

1
√
t2 + 2t

e−kt dt.

Upon using equation (11.7) and the result of Watson’s lemma one has that

I(k) ∼
∞∑
j=0

cj(− 1
2 )

21/2+j

Γ(1/2 + j)
k1/2+j

=

∞∑
j=0

√
π

j!21/2+j

Γ(1/2 + j)
Γ(1/2 − j)

1
k1/2+j

=

√
π

2
k−1/2 + O(k−3/2), k → +∞.

The solution to the modified Bessel equation with p = 0 is then given by

w(k) ∼ e−k
∞∑
j=0

√
π

j!21/2+j

Γ(1/2 + j)
Γ(1/2 − j)

1
k1/2+j

= e−k(
√
π

2
k−1/2 + O(k−3/2)), k → +∞.

11.3.3. Laplace’s method

Now consider equation (11.5) in the case that φ(t) . t. First suppose that φ ∈ C1(R) with φ′(t) , 0. Upon
setting

τ B φ(t) − φ(a),

equation (11.5) becomes

I(k) = e−kφ(a)
∫ φ(b)−φ(a)

0

f ◦ φ−1

φ′ ◦ φ−1 (τ + φ(a))e−kτ dτ.

Hence, in this case the integral can be transformed into a type that has already been studied. Note that as a
consequence of Watson’s lemma, in order to evaluate I(k) as k → +∞ one must only determine the behavior
of

f ◦ φ−1

φ′ ◦ φ−1 (τ + φ(a))
(
=
f ′(t)
φ′(t)

)
near τ = 0, (t = a).

Now suppose that there exists a c ∈ (a, b) such that φ′(c) = 0; furthermore, suppose that φ′′(c) > 0,
and that φ′(t) , 0 for all t ∈ [a, b]\{c}. One can then write I(k) = Ia(k) + Ib(k), where Ia(k) and Ib(k) are the
integrals to be evaluated on [a, c) and (c, b], respectively. Consider Ib(k). Upon using the above ideas one
can write

Ib(k) = e−kφ(c)
∫ φ(b)−φ(c)

0

f ◦ φ−1

φ′ ◦ φ−1 (τ + φ(c))e−kτ dτ,

which can be evaluated upon using Watson’s Lemma 11.5. Since

φ(t) = φ(c) +
1
2
φ′′(c)(t − c)2 +

1
6
φ′′′(c)(t − c)3 + O((t − c)4),

one has that
τ =

1
2
φ′′(c)(t − c)2 +

1
6
φ′′′(c)(t − c)3 + O((t − c)4).

Solving the above equation recursively yields

t − c =

√
2

φ′′(c)
τ1/2

(
1 −

φ′′′(c)

3
√

2φ′′(c)3/2
τ1/2 + O(τ)

)
.
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Upon using a Taylor expansion for f (t) and φ′(t) about t = c and substituting the above expression for t − c
one finds that for t ≈ c,

f (t)
φ′(t)

= a0τ
−1/2 + a1 + O(τ1/2),

where
a0 B

f (c)
√

2φ′′(c)
, a1 B

f ′(c)
φ′′(c)

−
f (c)φ′′′(c)
3φ′′(c)2 . (11.8)

Hence, as a consequence of Watson’s Lemma 11.5 one can now write

Ib(k) ∼ e−kφ(c)(a0
√
π k−1/2 + a1k

−1 + O(k−3/2)), k → +∞.

In a similar fashion, it can be shown that

Ia(k) ∼ e−kφ(c)(a0
√
π k−1/2 − a1k

−1 + O(k−3/2)), k → +∞.

Adding then gives the following result.
Lemma 11.7 (Laplace’s method). Consider equation (11.5), and suppose that φ ∈ C4(R) and f ∈ C2(R). If
c ∈ (a, b) is such that φ′(c) = 0 and φ′′(c) > 0, and if φ′(t) , 0 for t ∈ [a, b]\{c}, then

I(k) ∼ e−kφ(c)f (c)
√

2π
φ′′(c)

k−1/2, k → +∞.

Remark 11.8. One has that:

(a) if c ∈ {a, b}, then

I(k) ∼
1
2

e−kφ(c)f (c)
√

2π
φ′′(c)

k−1/2, k → +∞.

(b) if φ′′(c) < 0, then

I(k) ∼ ekφ(c)f (c)
√

2π
−φ′′(c)

k−1/2, k → +∞.

As an example, consider the gamma function

Γ(k + 1) =

∫ +∞

0
tke−t dt.

Setting s B t/k yields

Γ(k + 1) = kk+1
∫ +∞

0
e−kφ(s) ds, φ(s) = s − ln s.

Since s = 1 is a global minimum for φ(s) with φ(1) = φ′′(1) = 1 and φ′(1) = 0, upon applying Lemma 11.7
one has that

Γ(k + 1) ∼
√

2πk
(k

e

)k
.

This result is known as Stirling’s formula.
For another example, consider

I(n) B
n∑
k=0

n!
(n − k)!

n−k.

Since ∫ +∞

0
xke−nx dx = Γ(k + 1)n−(k+1) = k!n−(k+1),

one can rewrite the above as

I(n) =

∫ +∞

0
n

 n∑
k=0

(
n

k

)
xk

 e−nx dx.
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Due to the fact that

(1 + x)n =

n∑
k=0

(
n

k

)
xk ,

one finally has that

I(n) = n

∫ +∞

0
(1 + x)ne−nx dx = n

∫ +∞

0
en(ln(1+x)−x) dx.

One can now evaluate I(n) via Laplace’s method with φ(x) B ln(1 + x)− x. Note that φ(x) has a maximum at
x = 0 with φ(x) = −x2/2 +O(x3), so that for large n the primary contribution to the integral occurs at x = 0.
For large n one then has that

I(n) ∼ n
∫ +∞

0
e−nx

2/2 dx =

√
n

2

∫ +∞

0
x−1/2e−x dx =

√
π

2
n1/2, n → +∞.

11.4. Fourier type integrals

Recalling the definition of the Fourier transform in equation (11.1), we shall consider

lim
k→+∞

I(k) B
∫ b

a
f (t)eikφ(t) dt, (11.9)

where f, φ ∈ C1(R). If φ′(t) , 0, then one can change variables as in Section 11.3.3 to get that

I(k) =

∫ φ(b)−φ(a)

0
f̃ (t)eikt dt,

for a suitably defined f̃ (t). As it will be seen in Section 11.4.1, one will than have that I(k) ∼ O(k−1) as
k → +∞. Consequently, one expects that the major contribution to the integral will be at those points for
which φ′(t) = 0. Before this can be explored more fully, some preliminary results are needed.

11.4.1. Integration by parts

First suppose that φ(t) ≡ t, and that f ∈ CN+2(R). Upon following the proof of Lemma 11.4, it can then
be shown that

I(k) ∼
N∑
j=0

(−1)j

(ik)j+1 (f (j)(b)eikb − f (j)(a)eika), k → +∞.

Note that unlike the result of Lemma 11.4, the value of I(k) depends upon the evaluation of f (t) at both
endpoints. For an example, consider

lim
ϸ→0+

I(ϸ) B
∫ 1/ϸ

0
(1 + ϸt)−1eit dt.

Note that the integral is well-defined for each ϸ ≥ 0. If one sets τ B ϸt, then one sees that

I(ϸ) =
1
ϸ

∫ 1

0
(1 + τ)−1eiτ/ϸ dτ,

which is in the framework of the above result with f (τ) = (1 + τ)−1. Since

f (j)(0) = (−1)jj!, f (j)(1) = (−1)j
j!

2j+1

for each j ∈ N0, one has that

I(ϸ) ∼ ei/ϸ
(

1
2i

+ · · · +
j!

(2i)j+1 ϸ
j + · · ·

)
−

(
1
i

+ · · · +
j!

(i)j+1 ϸ
j + · · ·

)
, ϸ → 0+;
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in particular, one has that

I(ϸ) ∼ i(1 −
1
2

ei/ϸ) + (1 −
1
4

ei/ϸ)ϸ, ϸ → 0+.

For a comparison with Laplace type integrals, recall that in the example following Lemma 11.4 it was seen
that

lim
ϸ→0+

∫ 1/ϸ

0
(1 + ϸt)−1e−t dt ∼ 1 − ϸ.

11.4.2. Analogue of Watson’s lemma

Now assume that integration by parts fails, i.e., f (t) = atγ + o(tγ) as t → 0+ for some γ > −1. If one
further assumes that f (t) and all of its derivatives vanish at t = b, then one may expect that for

I(k) =

∫ b

0
f (t)eiµkt dt, µ ∈ R\{0},

one has

I(k) ∼ a
∫ +∞

0
tγeiµkt dt k → +∞.

Although the estimates leading to this conclusion will not be shown herein, it can indeed be justified. One
then needs to evaluate the above integral.

First suppose that µ > 0. Since the integrand is holomorphic in the first quadrant, as an application of
the residue theorem one can rotate the contour to the positive imaginary axis. This yields

I(k) ∼ a
∫ +i∞

0
tγeiµkt dt

= aeiπ(1+γ)/2
∫ +∞

0
tγe−µkt dt

= a
eiπ(1+γ)/2

(µk)1+γ
Γ(1 + γ).

If µ < 0, then upon rotating the contour to the negative imaginary axis one finds that

I(k) ∼ a
e−iπ(1+γ)/2

(−µk)1+γ
Γ(1 + γ).

Thus, one can conclude that

I(k) ∼ a
esign(µ)iπ(1+γ)/2

(|µ|)1+γ
Γ(1 + γ)k1+γ .

Remark 11.9. More generally, it can be shown that∫ +∞

0
tγeiµtp dt =

(
1
|µ|

)(1+γ)/p
Γ((1 + γ)/p)

p
esign(µ)iπ(1+γ)/2p, p ∈ N,

[1, Example 6.3.3].

11.4.3. The stationary phase method

Now consider equation (11.9) for a general φ(t) ∈ C2(R). It is expected that a major contribution to I(k)
will be at those points c which satisfy φ′(c) = 0, i.e., those points for which the phase is stationary. At such
a point

φ(t) = φ(c) +
1
2
φ′′(c)(t − c)2 + O((t − c)2),
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and

I(k) ∼
∫ c+δ

c−δ
f (c) exp

[
ik(φ(c) +

1
2
φ′′(c)(t − c)2)

]
dt, 0 < δ � 1.

In order to evaluate this integral, for µ B sign(φ′′(c)) set

µτ2 =
1
2
kφ′′(c)(t − c)2,

so that

I(k) ∼ f (c)eiφ(c)k

√
2

|φ′′(c)|k

∫ δ
√
|φ′′(c)|k/2

−δ
√
|φ′′(c)|k/2

eiµτ2 dτ.

Upon letting k → +∞ the integral can be evaluated as∫ +∞

−∞

eiµτ2 dτ = 2
∫ +∞

0
eiµτ2 dτ =

√
πeiµπ/4.

Thus, one expects that

I(k) ∼ f (c)eiφ(c)k

√
2π
|φ′′(c)|

eiµπ/4k−1/2. (11.10)

This argument can be made rigorous if f (t) and all of its derivatives vanish at the end points t = a and t = b
[1, Lemma 6.3.3].
Remark 11.10. Note that the contribution at the point t = c is of O(k−1/2), whereas it was seen in Sec-
tion 11.4.1 that any contribution from the end points is expected to be of O(k−1).

For an example, consider

I(k) B
∫ 2

1/2
(1 + t)eikφ(t) dt, φ(t) B −t +

1
3
t3, k → +∞.

Using the method of stationary phase, the dominant contribution will occur at those points for which
φ′(t) = 0, i.e., t = 1. Since φ(1) = −2/3 and φ′′(1) = 2, by equation (11.10) one sees that

I(k) ∼ 2
√
π e−i(2k/3−π/4)k−1/2, k → +∞.

Now suppose that f (t) ∼ �(t − c)γ +O((t − c)γ) for some γ > −1. In this case the above argument must be
modified. Let φ(t) − φ(c) ∼ α(t − c)2 + O(t − c)2), and set

µτ B φ(t) − φ(c), µ = sign(α),

i.e.,
t − c ∼ (τ/|α|)1/2.

Using the idea behind the proof of Laplace’s method and splitting the integral into the two parts Ia(k) and
Ib(k) yields

Ib(k) = eikφ(c)
∫ |φ(b)−φ(c)|

0
F (τ)eiµkτ dτ, F (τ) B µ

f (t)
φ′(t)

.

It is expected that the dominant contribution will occur at τ = 0. Since

F (τ) ∼
�

2|α|
(t − c)γ−1 ∼

�

2|α|(1+γ)/2
τ(γ−1)/2,

as a consequence of the results in Section 11.4.2 one can conclude that

Ib(k) =
1
2
�eikφ(c)Γ

(1
2

(1 + γ)
)

(k|α|)−(1+γ)/2eiµπ(1+γ)/4 + O(k−(1+γ)/2), k → +∞.

The term Ia(k) is computed in the same manner, and one finds that to leading order Ia(k) = Ib(k). Hence,

I(k) ∼ �eikφ(c)Γ

(1
2

(1 + γ)
)

(|α|)−(1+γ)/2eiµπ(1+γ)/4k−(1+γ)/2 + o(k−(1+γ)/2), k → +∞.

Remark 11.11. Note that if γ ≥ 1, then as a consequence of the discussion in Section 11.4.1 one expects
that the dominant terms will arise via an integration by parts.
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11.5. The method of steepest descent

Now consider
I(k) B

∮
C
f (z)ekφ(z) dz, k → +∞, (11.11)

where C ⊂ C is a given contour, and f (z) and φ(z) are holomorphic. The basic idea in evaluating I(k) is to
deform the contour C to a new contour C′, on which one can more easily perform calculations and make
estimates. In particular, if one writes φ = u + iv, suppose that v ≡ � on C′. One then has that

I(k) = eik�
∮
C′
f (z)eku(z) dz, k → +∞,

so that I(k) is a Laplace type integral. However, since the curve will no longer generally coincide with the
line Im z = 0, one has to be careful in making the necessary estimates.
Remark 11.12. In general, Laplace type integrals are preferred to Fourier type integrals, as in the former
case one can often derive an infinite asymptotic expansion, whereas in the latter case one often only finds
the first term in the expansion.

Now, on the curve C′ one has that ∇v = (vx , vy) points in the direction for which v changes most rapidly.
As a consequence of the Cauchy-Riemann equations one has that ∇v = (−uy, ux ), i.e., ∇v is orthogonal to ∇u.
Hence, the curve C′ is the curve on which u changes most rapidly. For this reason the above deformation
of the original contour C is known as the method of steepest descent. The question to next be answered
is: how does one choose the constant �? In Lemma 11.7 it was seen that the dominant contribution is
determined at those points z0 ∈ C for which φ′(z0) = 0. Such a point is known as a saddle point, and it is
known as a saddle point of order N if φ(j)(z0) = 0 for j = 1, . . . , N . If N = 1, then z0 is known as a simple
saddle point. Thus, one would like to deform C to the curve v(x, y) = v(x0, y0), where z0 = x0 + iy0 is a saddle
point. However, this may be problematic, for it may not be possible due to the presence of singularities.
In this case the endpoints or singularities will yield the dominant contribution. Furthermore, if there are
multiple saddle points, then one must take care to determine which yields the dominant contribution.

Suppose that z0 ∈ C is a saddle point of order N , and that φ(N+1)(z0) = aeiα, where a ∈ R+. If one sets
z − z0 = ρeiθ, then near the point z = z0 one has

φ(z) − φ(z0) ∼
(z − z0)N+1

(N + 1)!
φ(N+1)(z0)

= a
ρN+1

(N + 1)!
ei(α+(N+1)θ).

Since the directions of steepest descent are defined by v(z) = v(z0), one must then minimally have that
sin(α + (N + 1)θ) = 0. In order to determine which directions are those corresponding to descent, one must
also include the condition that cos(α + (N + 1)θ) < 0. Thus, the steepest descent directions are given by

θ =
−α + (2m + 1)π

N + 1
, m = 0, . . . , N. (11.12)

Note that for a simple saddle point the directions of steepest descent are given by

θ =
−α + π

2
, θ =

−α + 3π
2

.

For example, suppose that φ(z) = z−z3/3. One has that there exist two simple saddle points at z0 = ±1.
For z0 = −1 one has that φ′′(−1) = 2, so that α = 0. The directions are then given by θ = π/2 and θ = 3π/2.
for z0 = 1 one has that φ′′(1) = 2eiπ , so that the directions of steepest descent are θ = 0 and θ = π. The
situation is depicted in Figure 14:

11.5.1. Laplace’s method for complex contours

Let z0 ∈ C be a saddle point, and let Cs be a steepest descent curve which passes through z0. If C1 is a
descent curve which coincides with Cs only for some finite length near Cs, i.e., C1 is asymptotically equivalent
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Re z

Im z

Figure 14: Steepest descent directions for φ(z) = z − z3/3.

to Cs, then it can rigorously be shown that the integral over C1 differs from that over Cs by an exponentially
small quantity. Hence, one has that only the asymptotically equivalent contours are important. This may
be useful in certain applications in which it is not clear as to how one should deform the original contour
to the steepest descent contour.

Assume that the original contour C can be deformed onto the steepest descent contour Cs which passes
through the saddle point z0 which is of order n − 1. Since Im(φ(z) − φ(z0)) = 0 along Cs, one can write for
t ∈ R+,

− t = φ(z) − φ(z0) = (z − z0)nφ̂(z), (11.13)

where

φ̂(z) =

∞∑
j=0

φ̂j(z − z0)j, φ̂j B
φ(n+j)(z0)
(n + j)!

.

There are n roots to this equation. As an application of the Implicit Function Theorem one can, if desired,
write the series expansion in powers of t1/n for each of these roots. In practice, however, one often only
needs the first term. In this case one then has

−t ∼
φ(n)(z0)
n!

(z − z0)n ,

which yields

|z − z0| ∼

(
n!

|φ(n)(z0)|

)1/n

t1/n.

Note that
z − z0 = |z − z0|eiθ,

where the angle θ is given in equation (11.12).
Upon using the change of variables defined by equation (11.13), one has the the integral in equa-

tion (11.11) along Cs becomes

Is(k) ∼ −ekφ(z0)
∫ +∞

0

f (z)
φ′(z)

e−kt dt.

The upper limit of integration is replaced by +∞, as from Watson’s Lemma 11.5 one knows that the dominant
contribution to the integral comes from the neighborhood of the origin. Now,

φ′(z) ∼ φ(n)(z0)
(z − z0)n−1

(n − 1)!
.

If near the saddle point one assumes that

f (z) ∼ f0(z − z0)�−1, Re � > 0,
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then one has that

f (z)
φ′(z)

∼ (n − 1)!
f0

φ(n)(z0)
(z − z0)�−n

= −
f0(n!)�/nei�θ

n|φ(n)(z0)|�/n
t�/n−1.

In the second step one implicitly uses the facts that φ(n)(z0) = |φ(n)(z0)|eiα and α + nθ = (2j + 1)π. In
conclusion, one has that along the curve Cs,

Is(k) ∼ ekφ(z0)+i�θ f0(n!)�/n

n|φ(n)(z0)|�/n

∫ +∞

0
t�/n−1e−kt dt

= ei�θ f0(n!)�/n

n

Γ(�/n)
|φ(n)(z0)|�/n

ekφ(z0)k−�/n.

(11.14)

It must be kept in mind here that the above result holds only only one of the steepest descent curves. Since
there are n such curves, one must carefully consider the contribution to I(k) of each curve. This will be
illustrated in some of the following examples.

First consider the Hankel function

H (1)
ν (k) B

1
π

∮
C

eik cos zeiν(z−π/2) dz, k → +∞,

where the contour C is given in Figure 15. H (1)
ν (k) is a solution to Bessel’s equation,

d2u

dk2 +
1
k

du
dk

+

(
1 −

ν2

k2

)
u = 0,

which decays for ν ∈ R as k → +∞. A derivation of this fact is given in [6, Chapter 7.2.1]. Let us first
determine the leading order term in the asymptotic expansion of H (1)

ν (k). Since φ(z) B i cos z, one has that
the simple saddle points are given by zn B nπ for n ∈ Z. Given the choice of the contour C, it is clear that
the only relevant saddle point is z0 = 0. Since φ′′(0) = e−iπ/2, upon using equation (11.12) one sees that
the steepest descent directions are θ = 3π/4 (depicted by Ĉ1

s in Figure 15) and θ = 7π/4 (depicted by Ĉ2
s in

Figure 15). Now, to leading order one has that∮
C
∼

∮
Ĉ2
s

−

∮
Ĉ1
s

.

Upon evaluating each of the integrals on the right hand side via equation (11.14) with

f0 =
e−iνπ/2

π
, � = 1,

one finally sees that

H (1)
ν (k) ∼

√
2
π

ei(k−νπ/2−π/4)k−1/2, k → +∞. (11.15)

Now let us determine the higher-order asymptotic corrections to the integral. It will then be necessary to
achieve better than a linear approximation to Cs at the saddle point. The steepest descent curve is globally
defined by Imφ(z) = Imφ(0), i.e.,

cos x cosh y = 1.

Here the identity cos(x + iy) = cos x cosh y − i sin x sinh y was used. Using the Taylor expansion about z0 = 0
yields (

1 −
1
2
x2 + · · ·

) (
1 +

1
2
y2 + · · ·

)
= 1,

i.e.,
1
2

(y − x)(y + x) ∼ 0.
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Re z

Im z

Cs
C

Ĉ1
s

Ĉ2
s

π

−π

π
2

− π2

Figure 15: Contours for the Hankel function. The contour C is the original contour, Cs is the global
steepest descent contour, and Ĉ1

s ∪ Ĉ
2
s is the local steepest descent contour.

Thus, one recovers the local portion of the steepest descent curve, arg z = 3π/4. As |y| → +∞ one has that
cos x ∼ 2e−|y|, so that x ∼ π/2 as y→ −∞ and x ∼ −π/2 as y→ +∞. This qualitative information yields that
we can deform C onto Cs, as depicted in Figure 15.

The steepest descent transformation is given by

−t = φ(z) − φ(z0),

which near the saddle point yields
1
2
z2 −

1
4!
z4 + · · · = e−iπ/2t.

Solving the above recursively then gives that near the saddle point,

z =
√

2 e−iπ/4t1/2 +

√
2

12
e−i3π/4t3/2 + · · · .

Asymptotically one then has that

H (1)
ν (k) ∼

ei(k−νπ/2)

π

∮
Cs

e−kteiνz dz
dt

dt

∼
ei(k−νπ/2)

π

∮
Cs

e−kt
(
1 + iνz +

1
2

(iνz)2 + · · ·

) dz
dt

dt.

Upon substituting the expression for z into the above, collecting terms, and using Watson’s lemma, one
eventually sees that as k → +∞,

H (1)
ν (k) ∼

2ei(k−νπ/2)

π

( √
2π
2

e−iπ/4k−1/2 + νk−1 +

√
2π
4

(
1
4
− ν2)e−3iπ/4k−3/2 +

1
3

iν(ν2 − 1)k−2 + · · ·

)
.

The intermediate details are given in [1, Example 6.4.3]. Note that the above result agrees to leading order
with that of equation (11.15).

For the second example, let us determine the full asymptotic expansion for

I(k) B
∫ 1

0
eikt2 dt, k → +∞. (11.16)

Note that the stationary phase method outlined in Section 11.4.3 yields that to leading order,

I(k) ∼
√
π

2
eiπ/4k−1/2, k → +∞.
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Since φ(z) B iz2, one has that z0 = 0 is a simple saddle point. Furthermore, the steepest descent and
ascent paths are given by Imφ(z) = � ∈ R, i.e., x2 − y2 = �, where x B Re z and y B Im z. Thus, the steepest
descent and ascent paths through the end points of the integral are given by x = ±y and x =

√
1 + y2. It is

clear that eφ(z) is increasing along the path x = −y; hence, the steepest descent path is given by x = y. Since
Imφ(0) , Imφ(1), there is no continuous contour joining z = 0 and z = 1 on which Imφ(z) is constant.
Hence, the two steepest descent contours will be joined by the contour C2 (see Figure 16).

Re z

Im z

C1

C2

C3

iR

1

Figure 16: Steepest descent contours for equation (11.16).

As a consequence of Cauchy’s theorem one has that

I(k) =

∮
C1

eikz2
dz +

∮
C2

eikz2
dz +

∮
C3

eikz2
dz.

It is clear that
lim
R→+∞

∮
C2

eiz2
dz = 0,

so that

I(k) = lim
R→+∞

(∮
C1

eikz2
dz +

∮
C3

eikz2
dz

)
.

A simple change of variables yields that

lim
R→+∞

∮
C1

eikz2
dz = eiπ/4

∫ +∞

0
e−kr

2
dr =

√
π

2
eiπ/4k−1/2,

so all that is left to do is evaluate the second integral. Along C3 one has that the contour is given by
z =

√
1 + y2 + iy, so that z2 = 1 + i2y

√
1 + y2. Setting s B 2y

√
1 + y2 then yields that

lim
R→+∞

∮
C3

eikz2
dz = −

1
2

ieik
∫ +∞

0

e−ks
√

1 + is
ds.

By equation (11.6) one has that for s ∈ D(0,1),

(1 + is)−1/2 =

∞∑
j=0

ijcjsj, cj B

√
π

j! Γ(1/2 − j)
,

so that as a consequence of Watson’s Lemma 11.5 one has that∫ +∞

0

e−ks
√

1 + is
ds ∼

∞∑
j=0

ij
√
π

Γ(1/2 − j)
k−(1+j), k → +∞.
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In conclusion, one then has that

I(k) ∼
√
π

2

eiπ/4k−1/2 − eik
∞∑
j=0

i1+j

Γ(1/2 − j)
k−(1+j)

 , k → +∞.

Note that, as expected, the dominant contribution to the evaluation of I(k) is due to the saddle point, and
is captured via the method of stationary phase.

As a final example, consider

I(k) B
∫ +∞

−∞

eik(t+t3/3)

t2 + t20
dt, k → +∞, (11.17)

where t0 ∈ R+. The method of stationary phase is not immediately applicable for this problem, as the
stationary points of φ(z) B i(z + z3/3) are not real-valued. Hence, one must use the method of steepest
descent. It will now be assumed that t0 , 1. The case of t0 = 1 will be left to the interested student.

Re z

Im z

Cs

it0

i

Figure 17: The integration contour for equation (11.17). In this case t0 ∈ (0,1).

The saddle points are given by z0 B ±i, with φ′′(±i) = ∓2. Recalling equation (11.12), one has that for
z0 = i the steepest descent directions are θ = 0, π, whereas for z0 = −i the directions are θ = π/2,3π/2.
Since

φ(z) =
1
3
y(y2 − 3y − 3x2) + i

1
3
x(x2 − 3y2 + 3),

one has that the steepest descent curves through the saddle points are given by

x(3y2 − x2 − 3) = 0.

One must determine which of the two curves to use. Upon noting that the integral does not converge on the
curve Re z ≡ 0, one immediately sees that the only possible relevant curve is 3y2 − x2 − 3 = 0. Since eφ(z)

decays for arg z ∈ (0, π/3) and arg z ∈ (2π/3, π), and since these sectors contain the steepest descent curve
(note that the curves are asymptotic to arg z = π/6 for Re z > 0 and arg z = 5π/6 for Re z < 0), one can safely
deform onto this curve.

Consider the contour given in Figure 17. The leading order steepest descent contribution is given in
equation (11.14). As in the computation of the asymptotics for the Hankel function, one must subtract the
computation of θ = π from that of θ = 0. Upon doing so one sees that to leading order,∮

Cs

eik(t+t3/3)

t2 + t20
dt ∼

√
π

t20 − 1
e−2k/3k−1/2, k → +∞.

Upon using Cauchy’s theorem and calculating the pole contribution one then gets that as k → +∞,

I(k) ∼
√
π

t20 − 1
e−2k/3k−1/2 +

π

t0
e−k(t0−t30/3)H(1 − t0),

where H(·) represents the Heaviside function. Note that for t0 ∈ (0,1), the pole contribution dominates that
from the saddle point.
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11.6. Applications

First consider the linear Schr ĺodinger equation

i
∂q

∂t
+
∂2q

∂x2 = 0, q(x,0) = q0(x).

Upon using the Fourier transform as in Section 11.2 it can be shown that the solution is given by

q(x, t) =
1

2π

∫ +∞

−∞

q̂0(k)ei(kx−k2t) dk,

where q̂0(k) is the Fourier transform of q0(x). Let us determine the large t behavior of the solution for x/t
fixed. Set

φ(k) B
x

t
k − k2,

and rewrite the solution as

q(x, t) =
1

2π

∫ +∞

−∞

q̂0(k)eitφ(k) dk.

Since
φ′(k) =

x

t
− 2k, φ′′(k) = −2,

one has that the dominant asymptotic result is achieved along the line

x

t
= 2k.

The quantity cg(k) B 2k is called the group velocity. One can now use the method of stationary phase and
the result of equation (11.10) to conclude that as t → +∞, and along the line x = 2kt,

q(x, t) ∼
√
π e−iπ/4q̂0(k)

eik2t

t1/2
.

Note that in addition to decaying, the solution also oscillates.
Remark 11.13. The significance of this velocity is that for t � 1, each wave number k dominates the
solution in the region x ∼ cg(k)t. In general, if the solution to a particular dispersive PDE is given by

q(x, t) =
1

2π

∫ +∞

−∞

q̂0(k)ei(kx−ω(k)t) dk,

where ω(k) ∈ R is the dispersion relationship, then the group velocity is given by cg(k) = ω′(k). As above,
each wave number k dominates the solution in the region x ∼ ω′(k)t.

The linear Korteweg-de Vries (KdV) equation,

∂u

∂t
+
∂3u

∂x3 = 0, u(x,0) = u0(x), (11.18)

was considered in Section 11.2. Therein it was shown that the solution is given by

u(x, t) =
1

2π

∫ +∞

−∞

û0(k)ei(kx+k3t) dk,

where û0(k) is the Fourier transform of u0(x). Let us now derive the solution estimates given at that time.
First, it will be assumed that û0(k) is entire. Upon checking the definition of the Fourier transform, it is

clear that this condition will hold if u0(x) = O(e−δx
2
) for some 0 < δ � 1. This step is taken to ensure that

Cauchy’s theorem can be used whenever one wishes to do so. Rewrite the solution as

u(x, t) =
1

2π

∫ +∞

−∞

û0(k)etφ(k) dk, φ(k) B i
(x
t
k + k3

)
.



Complex Variable Class Notes 132

The stationary points satisfy
x

t
= −3k2,

so that they are given by

k± B ±

√
−
x

3t
.

Let ϸ > 0 be given, and first assume that x/t ≤ −ϸ. Upon using the method of stationary phase one sees
that to leading order

u(x, t) ∼
1

2
√
πk+t

(
û0(−k+)ei(2k3

+t−π/4) + û0(k+)e−i(2k3
+t−π/4)

)
.

Upon using the fact that u0(x) ∈ R one immediately sees that û0(−k+) = û0(k+); hence, upon writing
û0(k+) = ρ(k+)eiψ(k+) one gets that

u(x, t) ∼
ρ(k+)

2
√
πk+

cos(2k3
+t − π/4 − ψ(k+))

t1/2
. (11.19)

Note that for fixed k+ one has that u(x, t) = O(t−1/2), with the decay possessing an oscillatory nature.

x

t

x

t
< 0

x

t
> 0

x

t
≈ 0

Figure 18: Regions in which the asymptotic formulas for the solution to equation (11.18) are valid.
The solution behaves as in equation (11.19) for x/t < 0, as in equation (11.20) for x/t > 0,
and as in equation (11.21) for x/t ∼ 0.

Now assume that x/t ≥ ϸ. It is here that we will use the fact that û0(k) is entire. In this case one has that
the stationary points are k± ∈ iR, so that the method of stationary phase is no longer applicable. Hence,
we must use the method of steepest descent. Since etφ(k) grows for Im k < 0, one cannot use the point k−.
When considering the simple saddle point k+, upon using the fact that φ′′(k+) = −6|k+| one has that the
steepest descent directions are given by θ = 0, π. Appealing to equation (11.14) yields that to leading order,

u(x, t) ∼
1

2
√
π|k+|

û0(k+)
e−2|k+ |

3t

t1/2
. (11.20)

Note that for fixed α one has that u(x, t) = O(t−1/2e−2|k+ |
3t), i.e., the decay is exponentially fast.

Finally, consider the case that |x/t | < ϸ, so that the above asymptotics are no longer valid. Define the
similarity variables

ξ B k(3t)1/3, η B
x

(3t)1/3
,
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so that the solution can be rewritten as

u(x, t) =
1

2π(3t)1/3

∫ +∞

−∞

û0

(
ξ

(3t)1/3

)
ei(ηξ+ξ3/3) dξ.

For large t one then has that

u(x, t) ∼
û0(0)

2π(3t)1/3

∫ +∞

−∞

ei(ηξ+ξ3/3) dξ

=
û0(0)

(3t)1/3
Ai(η),

(11.21)

where Ai(η) is the integral representation of the Airy function, which is the solution of the differential
equation

d2v

dη2 − ηv = 0; v(0) =
3−2/3

Γ(2/3)
, v′(0) = −

3−4/3

Γ(4/3)
. (11.22)

The relevant asymptotic formulas are

Ai(η) ∼

 1
√
π
η−1/4 sin(2|η|3/2/3 + π/4), η → −∞

1
2
√
π
η−1/4e−2η3/2/3, η→ +∞

[1, Section 6.7]. Note that the solution decays exponentially fast as η → +∞, which matches with the result
of equation (11.20), and oscillates and decays as η → −∞, which matches with the result of equation (11.19).
Remark 11.14. If one substitutes

u(x, t) = (3t)−1/3A(η)

into equation (11.18), then one finds that

d
dη

(Aηη − ηA) = 0.

The boundary condition A(η)→ 0 as η → +∞ then yields equation (11.22). Hence, it is not unexpected that
the Airy function plays a role in the solution of equation (11.18).

For the final example, consider a variant of the Klein-Gordon equation,

c2 ∂
2u

∂x2 −
∂2u

∂t2
− b2u = δ(x)e−iω0t , u(x,0) =

∂u

∂t
(x,0) = 0,

where u(x, t) ≡ 0 for t < 0 (also considered in Section 11.2). It is assumed that there is no forcing for
t ≤ 0. The solution asymptotics will now be determined without explicitly determining the Green’s function.
It will be assumed that ω0 > b. This condition ensures that under the change of variables v B ueiω0t ,
the time-independent solutions v(x) will be oscillatory in space. Many of the intermediate details in the
subsequent calculations can be found in [2, Chapter 7.5]. Before continuing, the following preliminary
result is necessary.
Proposition 11.15. For ω0 ∈ R

+ consider

f (t) B

e−iω0t , t ≥ 0
0, t < 0.

The Fourier transform is given by f̂ (k) = i/(k − ω0).

Proof: For each ϸ > 0 set fϸ(t) B e−ϸt f (t). It is clear that fϸ(t)→ f (t) pointwise (but not uniformly), and that
fϸ ∈ L1(R) ∩ L2(R) for each ϸ > 0. A straightforward calculation yields that

f̂ϸ(k) =
i

k − ω0 + iϸ
.

The desired result is achieved upon letting ϸ → 0+. �
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Remark 11.16. One has that:

(a) It is interesting to note that for f (t) = e−iω0t , t ∈ R, one has that the Fourier transform is given by
f̂ (k) = δ(k − ω0). This is seen upon the application of distribution theory.

(b) One may be troubled by the fact that in the above proof fϸ 6→ f uniformly, although for |k − ω| ≥
δ, 0 < δ � 1, one has that the Fourier transform does converge uniformly to its limit. The difficulty
is that f < L1(R)∩ L2(R). However, it is straightforward to check that the above proof yields a valid
way of defining the Fourier transform for those functions f ∈ L1(R) ∩ L2(R). Hence, one can then
be comfortable in using it above.

(c) The above approach is similar to one in which one first defines the Fourier transform for Im k > 0,
and then takes the limit Im k → 0+.

Upon using the Fourier transform with respect to time, and using Proposition 11.15, one sees that û(x, k)
satisfies

c2 ∂
2û

∂x2 + (k2 − b2)û = i
δ(x)
k − ω0

.

Note that in Section 11.2 the transform was taken with respect to space. This ODE has the solution

û(x, k) =
ei(k2−b2)1/2 |x |/c

2c(k − ω0)(k2 − b2)1/2
,

where the branch cuts for (k2 − b2)1/2 are taken vertically downward from the points k = ±b. Furthermore,
(k2 − b2)1/2 ∈ R+ for k > b, while (k2 − b2)1/2 ∈ R− for k < −b. Thus, the solution satisfies the “outgoing"
radiation condition. Upon inversion one has that

u(x, t) =
1

4cπ

∮
C

ei[(k2−b2)1/2 |x |/c−kt]

(k − ω0)(k2 − b2)1/2
dk,

where C is the contour which passes above the three singularities (see Figure 19).

Re ν

Im ν

C′

Cs

ν0

ν̂(θ)−ν̂(θ)

Figure 19: The path C′ is the path of integration for equation (11.23), whereas Cs is the steepest
descent path. The other parameters are labelled in the text. Note that in this figure
ν0 < ν̂(θ).

The goal is to determine the asymptotics as t → +∞. In order to facilitate this calculation, set

λ B bt, ν B
k

b
, θ B

|x |

ct
.

Upon setting U (λ; θ) B u(x, t), one sees that

U (λ; θ) =
1

4bcπ

∮
C′

eλφ(ν;θ)

(ν − ν0)(ν2 − 1)1/2
dν, (11.23)
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where C′ is simply a rescaled version of C and

φ(ν; θ) B i(θ(ν2 − 1)1/2 − ν), ν0 B
ω0

b
.

Note that it is here that the nonresonant condition ω0 > b is crucial, for if it were to fail the pole singularity
would coincide with the branch point.

In order to determine the asymptotics as λ → +∞, one must use the method of steepest descents. First,

∂

∂ν
φ(ν; θ) = i

(
θν

(ν2 − 1)1/2
− 1

)
,

∂2

∂ν2φ(ν; θ) = −i
θ

(ν2 − 1)3/2
,

so that a simple saddle point exists at the points

ν = ±ν̂(θ), ν̂(θ) B (1 − θ2)−1/2.

Note that ν̂(θ)→ +∞ as θ→ 1−, and that at θ = 0 the branch points coincide with the saddle points. Hence,
in these two limits one anticipates complications. This is covered in detail in [2, Chapter 9].

First assume that θ > 1, so that ν̂(θ) < R. Upon using the fact that (ν2 − 1)1/2 = ν(1 +O(|ν|−1) for |ν| � 1,
upon closing the contour of integration and using Cauchy’s theorem, and finally upon using the result of
Lemma 4.36, one can show that

1
4bcπ

P.V.
∮
C′

eλφ(ν;θ)

(ν − ν0)(ν2 − 1)1/2
dν =

i
4bc

ei(θ(ν2
0−1)1/2−ν0)λ

(ν2
0 − 1)1/2

.

The details leading to the result are left for the interested student. Hence, if one defines U (λ; θ) via the
principal value integral, then U (λ; θ) = O(1) for θ > 1. This is equivalent to u(x, t) = O(1) for |x | > ct, which
is not physical. Hence, one cannot define U (λ; θ) via the principal value integral. Note that this argument
also forces the curve to go above the pole ν = ν0. If one does not use the principal value integral, then for
θ > 1 one has that U (λ; θ) ≡ 0, i.e., u(x, t) ≡ 0 for |x | > ct. This result is simply a reflection of the fact that
signals travel at the characteristic speed c, and no faster.

Now assume that 0 < θ < 1. At the saddle points one has

φ(±ν̂(θ)) = ∓i(1 − θ2)1/2, φ′′(±ν̂(θ)) = ∓i
(1 − θ2)3/2

θ2 .

Upon using equation (11.12) one sees that at ν̂(θ) the steepest descent directions are −π/4, 3π/4, while
at ν̂(θ) the steepest descent directions are π/4, −3π/4. In order to obtain further qualitative information
about the paths of steepest descent, first note that for |ν| � 1, φ(ν; θ) = −i(1∓θ)ν +O(|ν|−1). Here the minus
sign is taken for |Re ν| > 1, whereas the plus sign is taken for |Re ν| < 1. In either case, one sees that
Im ν → −∞ on the path of steepest descent. Finally, since Re(±ν̂(θ)) = 0, one has that Re(φ) < 0 on all
descent paths away from the saddle points. Thus, the steepest descent paths are as depicted in Figure 19.
While it is not needed, it can be shown that the vertical asymptotes are given by Re ν = ±

√
(1 + θ)/(1 − θ)

and Re ν = ±
√

(1 − θ)/(1 + θ).
If ν0 < ν̂(θ), i.e., θ > (ν2

0 − 1)1/2/ν0, then the deformation of C′ to a curve passing through the saddle
points does not pass through a pole of the integrand. Hence, upon applying Cauchy’s theorem and adding
up the leading order contributions from each saddle point via equation (11.14), one eventually sees that to
leading order,

U (λ; θ) ∼
1

2bc
√

2π (1 − θ2)1/4

 ei((1−θ2)1/2λ+π/4)

ν0 + (1 − θ2)−1/2
−

e−i((1−θ2)1/2λ+π/4)

ν0 − (1 − θ2)−1/2

λ−1/2. (11.24)

If ν0 > ν̂(θ), i.e., θ < (ν2
0 − 1)1/2/ν0, then the deformation of C′ to a curve passing through the saddle points

passes through the simple pole of the integrand. Upon applying the residue theorem one sees that to leading
order,

U (λ; θ) ∼ −
i

2bc
ei(θ(ν2

0−1)1/2−ν0)λ

(ν2
0 − 1)1/2

. (11.25)
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Remark 11.17. If θ = (ν2
0 − 1)1/2/ν0, then the saddle point and pole coincide. One can again use equa-

tion (11.14) to cover this case. The revised asymptotic formula is given in [2, equation (7.5.24)].
Now consider the physical significance of the above results. If θ < (ν2

0−1)1/2/ν0, i.e., |x | < (ν2
0−1)1/2ct/ν0,

then the signal is given by equation (11.25) and is of O(1). It oscillates at the source frequency ν0. Thus,
one must move at a sufficiently slow speed in order to “see" a sustained signal from the source. Outside
of this region, i.e., for (ν2

0 − 1)1/2ct/ν0 < |x | < ct, the wave is given by equation (11.24) and is of O(t−1/2).
Hence, the observer does not see the main signal, but rather an algebraically damped oscillatory wave.
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