Math 355 Homework Problems \#5

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. Suppose in terms of the standard basis,

$$
\boldsymbol{A}=\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & -1 & 0 \\
1 & 0 & 7
\end{array}\right)
$$

Find the representation of A in terms of the basis,

$$
B=\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} .
$$

2. Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ with $m \geq n$. Suppose $A=Q R$, where the columns of $Q \in \mathcal{M}_{m \times n}(\mathbb{F})$ are orthonormal, and $R \in \mathcal{M}_{n}(\mathbb{F})$ is upper-triangular with real and positive diagonal entries.
(a) Show that R is invertible.
(b) Show that $\operatorname{rank}(Q)=n$.
(c) Show that $\operatorname{rank}(A)=\operatorname{rank}(Q R)=n$.
(d) Solve the normal equations, $A^{\mathrm{H}} A \boldsymbol{x}=\boldsymbol{A}^{\mathrm{H}} \boldsymbol{b}$, using $\boldsymbol{R}, \boldsymbol{Q}$ (but, do not use Q^{-1} !).
3. \boldsymbol{A} is normal if $\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}}=\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}$. If \boldsymbol{A} is normal, show that $\operatorname{Col}(\boldsymbol{A})^{\perp}=\operatorname{Null}(\boldsymbol{A})$. (Hint: Recall that $\operatorname{Null}\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}\right)=$ $\operatorname{Null}(A))$
4. Let $S \subset \mathbb{F}^{n}$ be a subspace with orthonormal basis, $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$, and set $\boldsymbol{U}=\left(\boldsymbol{u}_{1} \boldsymbol{u}_{2} \cdots \boldsymbol{u}_{k}\right)$. Define the matrices,

$$
\boldsymbol{P}_{S}=\boldsymbol{U} \boldsymbol{U}^{\mathrm{H}}, \quad \boldsymbol{P}_{S^{\perp}}=\boldsymbol{I}_{n}-\boldsymbol{P}_{S} .
$$

Show that:
(a) $\boldsymbol{P}_{S} \cdot \boldsymbol{P}_{S}=\boldsymbol{P}_{S}$
(b) $\boldsymbol{P}_{S^{\perp}} \cdot \boldsymbol{P}_{S^{\perp}}=\boldsymbol{P}_{S^{\perp}}$
(c) $\boldsymbol{P}_{S} \cdot \boldsymbol{P}_{S_{\perp}}=\boldsymbol{P}_{S^{\perp}} \cdot \boldsymbol{P}_{S}=\boldsymbol{0}_{n}$
(d) $\operatorname{Null}\left(\boldsymbol{P}_{S}\right)=S^{\perp}$
(e) $\operatorname{Null}\left(\boldsymbol{P}_{S_{\perp}}\right)=S$
(f) $\operatorname{Col}\left(\boldsymbol{P}_{S}\right)=S$
(g) $\operatorname{Col}\left(\boldsymbol{P}_{S^{\perp}}\right)=S^{\perp}$.
5. Suppose,

$$
S=\operatorname{Span}\left\{\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)\right\} \subset \mathcal{M}_{2}(\mathbb{F}), \quad A=\left(\begin{array}{rr}
-2 & 3 \\
0 & 5
\end{array}\right) .
$$

Compute $\operatorname{proj}_{S}(\boldsymbol{A})$ using the inner product, $\langle\boldsymbol{A}, \boldsymbol{B}\rangle=\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{B}\right)$.

