Math 355 Homework Problems \#4

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. Find the matrix representation for the linear transformation $\mathcal{L}: \mathbb{F}_{2}[x] \mapsto \mathcal{M}_{2}(\mathbb{F})$ given by,

$$
a_{0}+a_{1} x+a_{2} x^{2} \mapsto\left(\begin{array}{cc}
a_{0}-a_{1}+a_{2} & 2 a_{0}+4 a_{2} \\
-a_{0}+2 a_{1} & 3 a_{0}+5 a_{1}+11 a_{2}
\end{array}\right) .
$$

2. Let $\langle\cdot, \cdot\rangle$ be the standard inner product on $\mathbb{F}^{n},\langle x, y\rangle=x^{\mathrm{H}} \boldsymbol{y}$. Let a norm on \mathbb{F}^{n} induced by this inner product be denoted $\|\cdot\|_{2}$,

$$
\|x\|_{2}^{2}=\langle\boldsymbol{x}, \boldsymbol{x}\rangle .
$$

A matrix $Q \in \mathcal{M}_{n}(\mathbb{F})$ is an orthonormal matrix if the columns of Q form an orthonormal basis for \mathbb{F}^{n}. Show that:
(a) $Q^{\mathrm{H}} \boldsymbol{Q}=\boldsymbol{Q} \boldsymbol{Q}^{\mathrm{H}}=\boldsymbol{I}_{n}$
(b) $\|Q x\|_{2}=\|x\|_{2}$ (the linear transformation preserves norm)
(c) $\langle Q x, Q y\rangle=\langle x, y\rangle$ (the linear transformation preserves angle)
3. Let the inner product on $\mathbb{R}_{3}[x]$ be given by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x
$$

Find the angle between $1-x$ and x^{3}.

