Math 355 Homework Problems #2

MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA, by C. Meyer

1. Let

$$A = \left(\begin{array}{rrr} 1 & 0 & 3 \\ 0 & 4 & -4 \\ 2 & 1 & 5 \end{array} \right).$$

Find a nonsingular matrix **P** such that $PA = E_A$. If you wish, you may write $P = E_k E_{k-1} \cdots E_2 E_1$ for some nonsingular matrices E_j .

2. The trace of a square matrix $A \in \mathcal{M}_n(\mathbb{R})$, trace(A), is the sum of the diagonal elements. Let $A, B \in \mathcal{M}_n(\mathbb{R})$ and $a \in \mathbb{R}$. Show that with respect to matrix addition and scalar multiplication,

- (a) trace(aA) = a trace(A)
- (b) trace(A + B) = trace(A) + trace(B).

3. Let $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$. Show that with respect to matrix/matrix multiplication,

(c) trace
$$(\mathbf{A}^{\mathrm{T}}\mathbf{B}) = \sum_{j=1}^{n} \mathbf{a}_{j}^{\mathrm{T}}\mathbf{b}_{j}$$
, where \mathbf{a}_{j} is the j^{th} column of \mathbf{A} , and \mathbf{b}_{j} is the j^{th} column of \mathbf{B}

(d) $trace(\mathbf{A}^{T}\mathbf{A}) = 0$ if and only if \mathbf{A} is the zero matrix.

4. Let $x, y \in \mathbb{R}^n$ be given, and set $A = xy^T$ to be the rank-one matrix formed from these vectors. Show that,

$$A^2 = \operatorname{trace}(A)A.$$

5. Determine which of the following subsets of $\mathcal{M}_n(\mathbb{R})$ are subspaces of $\mathcal{M}_n(\mathbb{R})$. Provide an explanation for your answer.

- (a) all matrices, A, such that trace(A) = 0
- (b) all Hermitian matrices
- (c) all skew-Hermitian matrices
- (d) all matrices, A, such that $A^2 = A$.

6. Suppose that n = 2 in Problem 5. Find a basis for each set which is a subspace. Determine the dimension of each of these subspaces.