Math 355 Homework Problems \#2

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. Let

$$
A=\left(\begin{array}{rrr}
1 & 0 & 3 \\
0 & 4 & -4 \\
2 & 1 & 5
\end{array}\right)
$$

Find a nonsingular matrix P such that $P A=E_{A}$. If you wish, you may write $P=E_{k} E_{k-1} \cdots E_{2} E_{1}$ for some nonsingular matrices \boldsymbol{E}_{j}.
2. The trace of a square matrix $\boldsymbol{A} \in \mathcal{M}_{n}(\mathbb{R})$, trace (\boldsymbol{A}), is the sum of the diagonal elements. Let $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{M}_{n}(\mathbb{R})$ and $a \in \mathbb{R}$. Show that with respect to matrix addition and scalar multiplication,
(a) $\operatorname{trace}(a \boldsymbol{A})=a \operatorname{trace}(A)$
(b) $\operatorname{trace}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{trace}(\boldsymbol{A})+\operatorname{trace}(\boldsymbol{B})$.
3. Let $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{M}_{m \times n}(\mathbb{R})$. Show that with respect to matrix/matrix multiplication,
(c) $\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{B}\right)=\sum_{j=1}^{n} \boldsymbol{a}_{j}^{\mathrm{T}} \boldsymbol{b}_{j}$, where \boldsymbol{a}_{j} is the $j^{\text {th }}$ column of \boldsymbol{A}, and \boldsymbol{b}_{j} is the $j^{\text {th }}$ column of \boldsymbol{B}
(d) $\operatorname{trace}\left(A^{\mathrm{T}} A\right)=0$ if and only if A is the zero matrix.
4. Let $x, y \in \mathbb{R}^{n}$ be given, and set $A=x y^{T}$ to be the rank-one matrix formed from these vectors. Show that,

$$
A^{2}=\operatorname{trace}(A) A .
$$

5. Determine which of the following subsets of $\mathcal{M}_{n}(\mathbb{R})$ are subspaces of $\mathcal{M}_{n}(\mathbb{R})$. Provide an explanation for your answer.
(a) all matrices, A, such that $\operatorname{trace}(A)=0$
(b) all Hermitian matrices
(c) all skew-Hermitian matrices
(d) all matrices, A, such that $A^{2}=A$.
6. Suppose that $n=2$ in Problem 5. Find a basis for each set which is a subspace. Determine the dimension of each of these subspaces.
