Math 355 Homework Problems \#1

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. Find the coefficients for the cubic function $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ which allow it to pass through the four points $(0,1),(1,1),(2,7)$, and $(3,31)$.
2. Consider the matrix $A \in \mathcal{M}_{4}(\mathbb{F})$,

$$
A=\left(\begin{array}{rrrr}
1 & 2 & -1 & -5 \\
3 & 6 & 2 & 0 \\
-2 & -4 & 3 & 13 \\
4 & 8 & 1 & -5
\end{array}\right)
$$

(a) What is $\operatorname{rank}(A)$?
(b) Find all solutions to $\boldsymbol{A x}=\mathbf{0}$.
3. Consider the boundary value problem,

$$
y^{\prime}=f(x), \quad y(0)=y(1)=0 .
$$

The goal is to recast this BVP as a linear algebra problem. Pick $N \geq 1$, and discretize the unit interval via

$$
x_{j}=j h, j=0,1, \ldots, N ; \quad h=\frac{1}{N} .
$$

Set

$$
y_{j}=y\left(x_{j}\right), \quad f_{j}=f\left(x_{j}\right) .
$$

(a) Using the rule,

$$
y^{\prime}(x) \sim \frac{y(x+h)-y(x-h)}{2 h},
$$

find the matrix D, and vectors y, f, so that the BVP is equivalent to $D y=f$.
(b) Using the rule,

$$
y^{\prime}(x) \sim \frac{y(x+h)-y(x)}{h},
$$

find the matrix D, and vectors y, f, so that the BVP is equivalent to $D y=f$.
(c) For which formulation is \boldsymbol{D} skew-Hermitian?
4. Let $A \in \mathcal{M}_{n}(\mathbb{F})$ be a square matrix. Show that:
(a) $A+A^{\mathrm{H}}$ is a Hermitian matrix
(b) $A-A^{\mathrm{H}}$ is a skew-Hermitian matrix
(c) \boldsymbol{A} can be written as the sum of a Hermitian matrix and a skew-Hermitian matrix.
5. Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$. Show that:
(a) $A A^{\mathrm{H}} \in \mathcal{M}_{m}(\mathbb{F})$ is Hermitian
(b) $A^{\mathrm{H}} A \in \mathcal{M}_{n}(\mathbb{F})$ is Hermitian.
6. When doing the method of undetermined coefficients in ODEs we were sometimes confronted with linear systems of the form,

$$
\left(\begin{array}{cc}
C & -\boldsymbol{I}_{2} \\
I_{2} & C
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{b_{1}}{b_{2}}
$$

where $\boldsymbol{C} \in \mathcal{M}_{2}(\mathbb{F})$, and $\boldsymbol{x}_{j}, \boldsymbol{b}_{j} \in \mathbb{F}^{2}$ for $j=1$, 2. Assume that $\boldsymbol{I}_{2}+\boldsymbol{C}^{2}$ is invertible.
(a) Show that this linear system can be solved if one first solves the smaller system,

$$
\left(C^{2}+I_{2}\right) x_{2}=C b_{2}-b_{1} .
$$

(b) If x_{2} is a solution to the problem in part (a), what is x_{1} ?
(c) Find the inverse of the full matrix in terms of the submatrices, \boldsymbol{I}_{2} and \boldsymbol{C}.
7. A matrix, \boldsymbol{U}, is unitary if $\boldsymbol{U}^{\mathrm{H}}=\boldsymbol{U}^{-1}$. If $\boldsymbol{Q}, \boldsymbol{U}$ are unitary, show that $\boldsymbol{Q} \boldsymbol{U}$ is unitary.

