Math 355 Homework Problems \#9

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. Let $\boldsymbol{A}=\left(\begin{array}{ll}0 & 2 \\ 6 & 1\end{array}\right)$.
(a) Find the spectral decomposition of \boldsymbol{A}.
(b) Find the spectral decomposition of A^{-1}.
(c) Find the spectral decomposition of $A^{3}-5 A^{2}+6 I_{2}$.
(d) Find the spectral decomposition of $\mathrm{e}^{\boldsymbol{A t}}$.
2. Let $A=\left(\begin{array}{rr}1 & 3 \\ -2 & -6\end{array}\right)$.
(a) Compute the Drazin inverse, A^{D}.
(b) Use the Drazin inverse to find all solutions to $A x=\binom{-2}{4}$.
3. Let $\boldsymbol{A} \in \mathcal{M}_{n}(\mathbb{F})$ be semi-simple with $r=\operatorname{rank}(\boldsymbol{A})$. Show that:
(a) $\mathrm{m}_{\mathrm{a}}(0)=\mathrm{m}_{\mathrm{g}}(0)=n-r$
(b) there are r nonzero eigenvalues (counting multiplicity)
(c) $\operatorname{Col}(\boldsymbol{A})=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\}$, where $\boldsymbol{A} \boldsymbol{v}_{j}=\lambda_{j} \boldsymbol{v}_{j}$ for $\lambda_{j} \neq 0$
(d) $\mathbb{F}^{n}=\operatorname{Col}(A) \oplus \operatorname{Null}(A)$.
4. Let $A \in \mathcal{M}_{n}(\mathbb{F})$ be semi-simple. Prove the following properties of the Drazin inverse, A^{D} :
(a) $\left(A^{\mathrm{D}}\right)^{\mathrm{D}}=A^{2} A^{\mathrm{D}}=A$.
(b) $\left(\boldsymbol{A}^{\mathrm{D}}\right)^{n}=\left(\boldsymbol{A}^{n}\right)^{\mathrm{D}}$ for any positive integer n
(c) $A^{\mathrm{D}}=A$ if and only if $A^{3}=A$.
5. Let $\boldsymbol{A} \in \mathcal{M}_{n}(\mathbb{F})$ be semi-simple. For each eigenvalue λ_{j} let \boldsymbol{v}_{j} be an associated eigenvector, let w_{j} be an associated adjoint eigenvector, and suppose,

$$
\left\langle\boldsymbol{w}_{j}, \boldsymbol{v}_{k}\right\rangle= \begin{cases}0, & j \neq k \\ 1, & j=k\end{cases}
$$

For each j set $\boldsymbol{P}_{j}=\boldsymbol{v}_{j} \boldsymbol{w}_{j}^{\mathrm{H}}$ to be the rank one spectral projection matrix. For a given $1 \leq \ell \leq n$ set

$$
Q=P_{1}+P_{2}+\cdots+P_{\ell} .
$$

(a) Show that $Q^{2}=Q$.
(b) Show that $Q A=A Q$.
(c) Show that $Q A^{\mathrm{D}}=A^{\mathrm{D}} \boldsymbol{Q}$.
(d) Find a basis for $\operatorname{Col}(Q)$ using the eigenvectors.
(e) Find a basis for $\operatorname{Null}(Q)$ using the eigenvectors.
6. In Problem 5 suppose that $\ell=\operatorname{rank}(A)$. Show that $A A^{\mathrm{D}}=A^{\mathrm{D}} A=Q$.

