Math 355 Homework Problems #9

MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA, by C. Meyer

1. Let $\boldsymbol{A} = \begin{pmatrix} 0 & 2 \\ 6 & 1 \end{pmatrix}$.

- (a) Find the spectral decomposition of *A*.
- (b) Find the spectral decomposition of A^{-1} .
- (c) Find the spectral decomposition of $A^3 5A^2 + 6I_2$.
- (d) Find the spectral decomposition of e^{At} .

2. Let $A = \begin{pmatrix} 1 & 3 \\ -2 & -6 \end{pmatrix}$.

(a) Compute the Drazin inverse, $A^{\rm D}$.

(b) Use the Drazin inverse to find all solutions to $Ax = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$.

3. Let $A \in \mathcal{M}_n(\mathbb{F})$ be semi-simple with $r = \operatorname{rank}(A)$. Show that:

(a)
$$m_a(0) = m_g(0) = n - r$$

- (b) there are *r* nonzero eigenvalues (counting multiplicity)
- (c) $\operatorname{Col}(A) = \operatorname{Span}\{v_1, \dots, v_r\}$, where $Av_j = \lambda_j v_j$ for $\lambda_j \neq 0$
- (d) $\mathbb{F}^n = \operatorname{Col}(A) \oplus \operatorname{Null}(A)$.

4. Let $A \in \mathcal{M}_n(\mathbb{F})$ be semi-simple. Prove the following properties of the Drazin inverse, A^{D} :

- (a) $(A^{\rm D})^{\rm D} = A^2 A^{\rm D} = A$.
- (b) $(\mathbf{A}^{\mathrm{D}})^n = (\mathbf{A}^n)^{\mathrm{D}}$ for any positive integer *n*
- (c) $A^{D} = A$ if and only if $A^{3} = A$.

5. Let $A \in \mathcal{M}_n(\mathbb{F})$ be semi-simple. For each eigenvalue λ_j let v_j be an associated eigenvector, let w_j be an associated adjoint eigenvector, and suppose,

$$\langle \boldsymbol{w}_j, \boldsymbol{v}_k \rangle = \begin{cases} 0, & j \neq k \\ 1, & j = k. \end{cases}$$

For each *j* set $P_j = v_j w_j^{H}$ to be the rank one spectral projection matrix. For a given $1 \le \ell \le n$ set

$$\boldsymbol{Q} = \boldsymbol{P}_1 + \boldsymbol{P}_2 + \dots + \boldsymbol{P}_\ell.$$

- (a) Show that $Q^2 = Q$.
- (b) Show that QA = AQ.
- (c) Show that $QA^{D} = A^{D}Q$.
- (d) Find a basis for Col(Q) using the eigenvectors.
- (e) Find a basis for Null(**Q**) using the eigenvectors.
- **6.** In Problem **5** suppose that $\ell = \operatorname{rank}(A)$. Show that $AA^{D} = A^{D}A = Q$.