Math 355 Homework Problems \#8

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. For the data in each of the the files, "LeastSquaresDataLinear.mat" and "LeastSquaresDataQuadratic.mat", you are to do the following:
(a) compute the singular values
(b) determine the relative error associated with approximating the data with only the first term in the outer expansion
(c) use least-squares (line for ". . .Linear.mat", and quadratic for "...Quadratic.mat") to fit the data associated with the first term in the outer expansion - make sure you explicitly write down the coefficients
(d) plot the least-squares curve for the data associated with the first term in the outer expansion, along with the original data, on one plot.
2. Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$, and suppose A has full rank. Show that the solution using the Moore-Penrose pseudo-inverse, $\boldsymbol{x}=\boldsymbol{A}^{\dagger} \boldsymbol{b}$, to the linear system, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, is the solution to the associated normal equations.
3. Consider the matrix $A=\left(\begin{array}{rrrr}-4 & -2 & -4 & -2 \\ 2 & -2 & 2 & 1 \\ -4 & 1 & -4 & -2\end{array}\right)$.
(a) What is $r=\operatorname{rank}(A)$?
(b) Compute the SVD, $\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\mathrm{H}}$, where

$$
\boldsymbol{U} \in \mathcal{M}_{3 \times r}(\mathbb{F}), \quad \Sigma \in \mathcal{M}_{r}(\mathbb{F}), \quad V \in \mathcal{M}_{4 \times r}(\mathbb{F}) .
$$

(c) Using the SVD of \boldsymbol{A}, provide an orthonormal basis for $\operatorname{Col}(\boldsymbol{A})$.
(d) Using the SVD of A, provide an orthonormal basis for $\operatorname{Col}\left(A^{\mathrm{H}}\right)$.
(e) Compute the Moore-Penrose pseudo-inverse, $A^{\dagger} \in \mathcal{M}_{4 \times 3}(\mathbb{F})$.
4. Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ have the SVD outer product expansion,

$$
\boldsymbol{A}=\sum_{j=1}^{r} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{\mathrm{H}}, \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0 .
$$

Show that the Moore-Penrose pseudo-inverse of A has the outer expansion,

$$
\boldsymbol{A}^{\dagger}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} \boldsymbol{v}_{j} \boldsymbol{u}_{j}^{\mathrm{H}} .
$$

5. Let $A \in \mathcal{M}_{n}(\mathbb{F})$ be invertible and have the SVD outer product expansion,

$$
A=\sum_{j=1}^{n} \sigma_{j} \boldsymbol{u}_{j} v_{j}^{\mathrm{H}}, \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0
$$

For a given $s<n$ let \boldsymbol{B} be a lower rank approximation,

$$
\boldsymbol{B}=\sum_{j=1}^{s} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{\mathrm{H}} \quad \leadsto \boldsymbol{B}^{+}=\sum_{j=1}^{s} \frac{1}{\sigma_{j}} \boldsymbol{v}_{j} \boldsymbol{u}_{j}^{\mathrm{H}} .
$$

Using the norm induced by the standard inner product on \mathbb{F}^{n}, show that

$$
\left\|\boldsymbol{A}^{-1} \boldsymbol{b}-\boldsymbol{B}^{\dagger} \boldsymbol{b}\right\| \geq \frac{1}{\sigma_{s+1}}\left(\sum_{j=s+1}^{n}\left|b_{j}\right|^{2}\right)^{1 / 2}, \quad b_{j}=\left\langle\boldsymbol{u}_{j}, \boldsymbol{b}\right\rangle .
$$

In other words, the exact solution, $\boldsymbol{A}^{-1} \boldsymbol{b}$, to the linear system is not necessarily close to the normal equations solution, $\boldsymbol{B}^{\dagger} \boldsymbol{b}$, of the approximate system. (Hint: use the Moore-Penrose pseudo-inverse for \boldsymbol{A}^{-1})
6. Take your favorite digital image of minimal size 2 MB . Using the provided MATLAB program DataCompressionColor.m as a template, determine the size of your reduced image which has a relative error of 10% or less when compared to your original image. Provide supporting evidence for your conclusion. (Hint: use the MATLAB command imwrite to convert a data file to an image)

