Math 355 Homework Problems #7

MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA, by C. Meyer

1. From the shared class Google Drive folder there are three files entitled MatrixMarket*.mat. You are to solve the linear system Ax = b using the GMRES algorithm using the MATLAB command gmres for one of those three files. The data file you choose depends on the first letter of your last name:

- A-H: MatrixMarket1.mat
- I-Q:MatrixMarket2.mat
- S-Z:MatrixMarket3.mat
- (a) How many iterates are required to achieve a relative error of 10^{-3} ?
- (b) How many iterates are required to achieve a relative error of 10^{-4} ?
- (c) How many iterates are required to achieve a relative error of 10^{-5} ?

Provide a plot of the relative residual vs. the number of iterates using the command semilogy.

2. Let $A \in \mathcal{M}_n(\mathbb{F})$ be given.

- (a) If $Av = \lambda v$, show that $A^{\ell}v = \lambda^{\ell}v$ for $\ell = 2, 3, ...$
- (b) If $A^M = \mathbf{0}_n$ for some $M \ge 2$ (*A* is nilpotent), show that trace(A) = 0.
- (c) If *A* is nilpotent, show that *A* is not invertible.
- 3. Find the algebraic and geometric multiplicities of all the eigenvalues for the matrix,

$$A = \left(\begin{array}{rrr} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{array} \right).$$

- **4.** Suppose that $A \in \mathcal{M}_n(\mathbb{F})$. If $\lambda \in \sigma(A)$, show that:
 - (a) $a\lambda \in \sigma(aA)$
 - (b) $1 + a\lambda \in \sigma(\mathbf{I}_n + a\mathbf{A})$.

5. If $x, y \in \mathbb{F}^n$, find:

- (a) $\sigma(xy^{\rm H})$
- (b) $\sigma(\boldsymbol{I}_n + \boldsymbol{x}\boldsymbol{y}^{\mathrm{H}})$
- (c) det($I_n + xy^H$).

6. Suppose that $A, B \in \mathcal{M}_n(\mathbb{F})$ are similar, i.e., $A = P^{-1}BP$ for some invertible matrix P. Show that for any integer $k, A^k = P^{-1}B^kP$.

7. Suppose that $A \in \mathcal{M}_n(\mathbb{F})$ is semisimple with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

(a) Let

$$p(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{F}_n[x]$$

be any polynomial. Prove the Semisimple Spectral Mapping Theorem: the eigenvalues of

$$p(\mathbf{A}) = a_0 \mathbf{I}_n + a_1 \mathbf{A} + a_2 \mathbf{A}^2 + \dots + a_n \mathbf{A}^n$$

are $\{p(\lambda_1), p(\lambda_2), \dots, p(\lambda_n)\}.$

(b) Show that $p_A(A) = 0_n$, where $p_A(\lambda)$ is the characteristic polynomial for the matrix A.