Math 355 Homework Problems \#7

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. From the shared class Google Drive folder there are three files entitled MatrixMarket*. mat. You are to solve the linear system $A \boldsymbol{x}=\boldsymbol{b}$ using the GMRES algorithm using the MATLAB command gmres for one of those three files. The data file you choose depends on the first letter of your last name:

- A-H: MatrixMarket1.mat
- I-Q: MatrixMarket2.mat
- S-Z: MatrixMarket3.mat
(a) How many iterates are required to achieve a relative error of 10^{-3} ?
(b) How many iterates are required to achieve a relative error of 10^{-4} ?
(c) How many iterates are required to achieve a relative error of 10^{-5} ?

Provide a plot of the relative residual vs. the number of iterates using the command semilogy.
2. Let $A \in \mathcal{M}_{n}(\mathbb{F})$ be given.
(a) If $\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}$, show that $\boldsymbol{A}^{\ell} \boldsymbol{v}=\lambda^{\ell} \boldsymbol{v}$ for $\ell=2,3, \ldots$.
(b) If $\boldsymbol{A}^{M}=\boldsymbol{0}_{n}$ for some $M \geq 2$ (\boldsymbol{A} is nilpotent), show that $\operatorname{trace}(\boldsymbol{A})=0$.
(c) If A is nilpotent, show that A is not invertible.
3. Find the algebraic and geometric multiplicities of all the eigenvalues for the matrix,

$$
A=\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 3 & 1 \\
0 & 1 & 3
\end{array}\right)
$$

4. Suppose that $\boldsymbol{A} \in \mathcal{M}_{n}(\mathbb{F})$. If $\lambda \in \sigma(A)$, show that:
(a) $a \lambda \in \sigma(a \boldsymbol{A})$
(b) $1+a \lambda \in \sigma\left(\mathbf{I}_{n}+a \boldsymbol{A}\right)$.
5. If $x, y \in \mathbb{F}^{n}$, find:
(a) $\sigma\left(x y^{\mathrm{H}}\right)$
(b) $\sigma\left(I_{n}+x y^{\mathrm{H}}\right)$
(c) $\operatorname{det}\left(\boldsymbol{I}_{n}+x y^{\mathrm{H}}\right)$.
6. Suppose that $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{M}_{n}(\mathbb{F})$ are similar, i.e., $\boldsymbol{A}=\boldsymbol{P}^{-1} \boldsymbol{B} \boldsymbol{P}$ for some invertible matrix \boldsymbol{P}. Show that for any integer $k, \boldsymbol{A}^{k}=\boldsymbol{P}^{-1} \boldsymbol{B}^{k} \boldsymbol{P}$.
7. Suppose that $A \in \mathcal{M}_{n}(\mathbb{F})$ is semisimple with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
(a) Let

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{F}_{n}[x]
$$

be any polynomial. Prove the Semisimple Spectral Mapping Theorem: the eigenvalues of

$$
p(\boldsymbol{A})=a_{0} \boldsymbol{I}_{n}+a_{1} \boldsymbol{A}+a_{2} \boldsymbol{A}^{2}+\cdots+a_{n} \boldsymbol{A}^{n}
$$

are $\left\{p\left(\lambda_{1}\right), p\left(\lambda_{2}\right), \ldots, p\left(\lambda_{n}\right)\right\}$.
(b) Show that $p_{A}(A)=\boldsymbol{o}_{n}$, where $p_{A}(\lambda)$ is the characteristic polynomial for the matrix A.

