Math 355 Homework Problems #6

MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA, by C. Meyer

1. Let $\langle \cdot, \cdot \rangle$ be the standard inner product on \mathbb{F}^n , $\langle x, y \rangle = x^H y$. Let a norm on \mathbb{F}^n induced by this inner product be denoted $\|\cdot\|_2$,

$$\|\boldsymbol{x}\|_2^2 = \langle \boldsymbol{x}, \boldsymbol{x} \rangle$$

A matrix $Q \in \mathcal{M}_n(\mathbb{F})$ is an orthonormal matrix if the columns of Q form an orthonormal basis for \mathbb{F}^n . Show that:

- (a) $\boldsymbol{Q}^{\mathrm{H}}\boldsymbol{Q} = \boldsymbol{Q}\boldsymbol{Q}^{\mathrm{H}} = \boldsymbol{I}_{n}$
- (b) $\|Qx\|_2 = \|x\|_2$ (the linear transformation preserves norm)
- (c) $\langle Qx, Qy \rangle = \langle x, y \rangle$ (the linear transformation preserves angle)

2. Let the inner product on $\mathbb{R}_5[x]$ be given by

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,\mathrm{d}x.$$

- (a) Find the length of *x*.
- (b) Find the angle between x and x^5 .

3. Let

$$S = \operatorname{Span}\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \right\} \subset \mathcal{M}_2(\mathbb{F}),$$

and let $\mathcal{M}_2(\mathbb{F})$ have the Frobenius inner product, $\langle A, B \rangle = \text{trace}(A^H B)$.

- (a) Find an orthonormal basis for *S*.
- (b) Find the orthogonal projection of $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ onto *S*.
- 4. Consider the matrix,

$$\boldsymbol{A} = \left(\begin{array}{rrr} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{array} \right).$$

- (a) Find the *QR*-factorization.
- (b) Find the orthogonal projection matrix, $P_{Col(A)}$.

5. Let the inner product on $\mathcal{M}_n(\mathbb{F})$ be the Frobenius inner product, $\langle A, B \rangle = \text{trace}(A^H B)$. Let $E_{jk} = e_j e_k^H \in \mathcal{M}_n(\mathbb{F})$ for j, k = 1, ..., n be the rank-one matrix with a one in the jk entry, and zero everywhere else. Show that:

(a)
$$\langle \boldsymbol{E}_{jk}, \boldsymbol{E}_{\ell m} \rangle = \begin{cases} 0, & (\ell, m) \neq (j, k) \\ 1, & (\ell, m) = (j, k) \end{cases}$$

(b) $\{E_{jk}\}$ is an orthonormal basis for $\mathcal{M}_n(\mathbb{F})$.