Math 355 Homework Problems \#6

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. Let $\langle\cdot, \cdot\rangle$ be the standard inner product on $\mathbb{F}^{n},\langle\boldsymbol{x}, \boldsymbol{y}\rangle=x^{\mathrm{H}} \boldsymbol{y}$. Let a norm on \mathbb{F}^{n} induced by this inner product be denoted $\|\cdot\|_{2}$,

$$
\|x\|_{2}^{2}=\langle x, x\rangle
$$

A matrix $Q \in \mathcal{M}_{n}(\mathbb{F})$ is an orthonormal matrix if the columns of Q form an orthonormal basis for \mathbb{F}^{n}. Show that:
(a) $\boldsymbol{Q}^{\mathrm{H}} \boldsymbol{Q}=\boldsymbol{Q} \boldsymbol{Q}^{\mathrm{H}}=\boldsymbol{I}_{n}$
(b) $\|Q x\|_{2}=\|x\|_{2}$ (the linear transformation preserves norm)
(c) $\langle Q x, Q y\rangle=\langle x, y\rangle$ (the linear transformation preserves angle)
2. Let the inner product on $\mathbb{R}_{5}[x]$ be given by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x
$$

(a) Find the length of x.
(b) Find the angle between x and x^{5}.
3. Let

$$
S=\operatorname{Span}\left\{\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right)\right\} \subset \mathcal{M}_{2}(\mathbb{F})
$$

and let $\mathcal{M}_{2}(\mathbb{F})$ have the Frobenius inner product, $\langle\boldsymbol{A}, \boldsymbol{B}\rangle=\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{B}\right)$.
(a) Find an orthonormal basis for S.
(b) Find the orthogonal projection of $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ onto S.
4. Consider the matrix,

$$
A=\left(\begin{array}{rr}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)
$$

(a) Find the $Q R$-factorization.
(b) Find the orthogonal projection matrix, $\boldsymbol{P}_{\mathrm{Col}(\boldsymbol{A})}$.
5. Let the inner product on $\mathcal{M}_{n}(\mathbb{F})$ be the Frobenius inner product, $\langle\boldsymbol{A}, \boldsymbol{B}\rangle=\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{B}\right)$. Let $\boldsymbol{E}_{j k}=\boldsymbol{e}_{j} \boldsymbol{e}_{k}^{\mathrm{H}} \in \mathcal{M}_{n}(\mathbb{F})$ for $j, k=1, \ldots, n$ be the rank-one matrix with a one in the $j k$ entry, and zero everywhere else. Show that:
(a) $\left\langle\boldsymbol{E}_{j k}, \boldsymbol{E}_{\ell m}\right\rangle= \begin{cases}0, & (\ell, m) \neq(j, k) \\ 1, & (\ell, m)=(j, k)\end{cases}$
(b) $\left\{\boldsymbol{E}_{j k}\right\}$ is an orthonormal basis for $\mathcal{M}_{n}(\mathbb{F})$.

