Math 355 Homework Problems #3

MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA, by C. Meyer

- **1.** Consider the consistent linear system Ax = b.
 - (a) Let $a \in Col(A^H)$ be given. Show that $a^H x$ is constant for *all* solutions to the system. *Note*: The result is clearly true if the solution is unique. You need to show that it is true if Null(A) is nontrivial.
 - (b) Suppose that $y \in \text{Null}(A^{\text{H}})$. Show that $y^{\text{H}}b = 0$. (this result is known as the Fredholm alternative)

2. For the matrix and vector,

$$A = \begin{pmatrix} 1 & 2 & 5 \\ 0 & -1 & -1 \\ 3 & -5 & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 5 \\ -7 \\ 3 \end{pmatrix},$$

write $\boldsymbol{b} = \boldsymbol{b}_{c} + \boldsymbol{b}_{n}$, where $\boldsymbol{b}_{c} \in \text{Col}(\boldsymbol{A})$ and $\boldsymbol{b}_{n} \in \text{Null}(\boldsymbol{A}^{\text{H}})$.

3. For the matrix

$$A = \left(\begin{array}{rrrrr} 2 & 7 & 3 & 4 \\ 1 & 1 & -1 & -3 \\ 4 & 6 & -2 & -8 \end{array}\right),$$

find $\operatorname{Col}(A)$, $\operatorname{Col}(A^{\mathrm{H}})$, $\operatorname{Null}(A)$, $\operatorname{Null}(A^{\mathrm{H}})$.

4. Set

$$\boldsymbol{A} = \left(\begin{array}{rrr} 1 & 2 & -1 \\ -1 & 1 & -5 \\ 3 & 4 & 1 \end{array} \right), \quad \boldsymbol{B} = \left(\begin{array}{rrr} 4 & 0 & 5 \\ -1 & 3 & 1 \\ 10 & -2 & 11 \end{array} \right).$$

Is Col(A) = Col(B)? Explain. If the answer is YES, what is a minimal spanning set for Col(A)?