Math 355 Homework Problems \#3

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. Consider the consistent linear system $\boldsymbol{A x}=\boldsymbol{b}$.
(a) Let $\boldsymbol{a} \in \operatorname{Col}\left(\boldsymbol{A}^{\mathrm{H}}\right)$ be given. Show that $\boldsymbol{a}^{\mathrm{H}} \boldsymbol{x}$ is constant for all solutions to the system. Note: The result is clearly true if the solution is unique. You need to show that it is true if $\operatorname{Null}(A)$ is nontrivial.
(b) Suppose that $y \in \operatorname{Null}\left(\boldsymbol{A}^{\mathrm{H}}\right)$. Show that $\boldsymbol{y}^{\mathrm{H}} \boldsymbol{b}=0$. (this result is known as the Fredholm alternative)
2. For the matrix and vector,

$$
A=\left(\begin{array}{rrr}
1 & 2 & 5 \\
0 & -1 & -1 \\
3 & -5 & 4
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{r}
5 \\
-7 \\
3
\end{array}\right),
$$

write $\boldsymbol{b}=\boldsymbol{b}_{\mathrm{c}}+\boldsymbol{b}_{\mathrm{n}}$, where $\boldsymbol{b}_{\mathrm{c}} \in \operatorname{Col}(\boldsymbol{A})$ and $\boldsymbol{b}_{\mathrm{n}} \in \operatorname{Null}\left(\boldsymbol{A}^{\mathrm{H}}\right)$.
3. For the matrix

$$
A=\left(\begin{array}{rrrr}
2 & 7 & 3 & 4 \\
1 & 1 & -1 & -3 \\
4 & 6 & -2 & -8
\end{array}\right)
$$

find $\operatorname{Col}(\boldsymbol{A}), \operatorname{Col}\left(\boldsymbol{A}^{\mathrm{H}}\right), \operatorname{Null}(\boldsymbol{A}), \operatorname{Null}\left(\boldsymbol{A}^{\mathrm{H}}\right)$.
4. Set

$$
\boldsymbol{A}=\left(\begin{array}{rrr}
1 & 2 & -1 \\
-1 & 1 & -5 \\
3 & 4 & 1
\end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{rrc}
4 & 0 & 5 \\
-1 & 3 & 1 \\
10 & -2 & 11
\end{array}\right) .
$$

Is $\operatorname{Col}(\boldsymbol{A})=\operatorname{Col}(\boldsymbol{B})$? Explain. If the answer is YES, what is a minimal spanning set for $\operatorname{Col}(\boldsymbol{A})$?

