Math 355 Homework Problems #10

MATRIX ANALYSIS AND APPLIED LINEAR ALGEBRA, by C. Meyer

1. Consider the matrix

$$\boldsymbol{A} = \left(\begin{array}{rrrr} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 4 \end{array}\right) + \epsilon \left(\begin{array}{rrrr} 1 & 0 & 3 \\ 0 & -2 & -7 \\ 3 & -7 & -4 \end{array}\right).$$

Label the eigenvalues as $\lambda_j = \lambda_j^0 + \epsilon \lambda_j^1 + \mathcal{O}(\epsilon^2)$ for j = 1, 2, 3. Determine the constants λ_j^1 .

2. Consider the matrix and subspace,

$$A = \begin{pmatrix} -1 & 0 & 5 \\ 0 & 2 & 0 \\ 5 & 0 & -1 \end{pmatrix}, \quad S = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \right\}.$$

Let P_S denote the orthogonal projection matrix onto S.

- (a) Find a function whose zeros correspond to the eigenvalues for the 2×2 matrix induced by $P_s A P_s$.
- (b) Explicitly find the eigenvalues for the induced matrix.

3. Let $A_0 \in \mathcal{M}_n(\mathbb{F})$ be simple and Hermitian. Let $V \in \mathcal{M}_{n \times k}$ for $1 \le k < n$ be an orthogonal matrix. Consider the matrix

$$\boldsymbol{A} = \boldsymbol{A}_0 + \boldsymbol{\epsilon} \boldsymbol{V} \boldsymbol{V}^{\mathrm{H}}, \quad |\boldsymbol{\epsilon}| \ll 1.$$

- (a) Verify that *A* is Hermitian.
- (b) Label the real eigenvalues as $\lambda_j = \lambda_j^0 + \epsilon \lambda_j^1 + \mathcal{O}(\epsilon^2)$ for j = 1, ..., n. Determine λ_j^1 .
- (c) Show that $\lambda_i^1 \ge 0$ for each *j*.
- (d) What condition is needed for $\lambda_i^1 = 0$?
- (e) How does the set of eigenvalues for A relate to the set of eigenvalues for A_0 ?