Math 355 Homework Problems \#10

Matrix Analysis and Applied Linear Algebra, by C. Meyer

1. Consider the matrix

$$
A=\left(\begin{array}{lll}
3 & 2 & 0 \\
2 & 3 & 0 \\
0 & 0 & 4
\end{array}\right)+\epsilon\left(\begin{array}{rrr}
1 & 0 & 3 \\
0 & -2 & -7 \\
3 & -7 & -4
\end{array}\right)
$$

Label the eigenvalues as $\lambda_{j}=\lambda_{j}^{0}+\epsilon \lambda_{j}^{1}+\mathcal{O}\left(\epsilon^{2}\right)$ for $j=1,2,3$. Determine the constants λ_{j}^{1}.
2. Consider the matrix and subspace,

$$
A=\left(\begin{array}{rrr}
-1 & 0 & 5 \\
0 & 2 & 0 \\
5 & 0 & -1
\end{array}\right), \quad S=\operatorname{Span}\left\{\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right)\right\} .
$$

Let \boldsymbol{P}_{S} denote the orthogonal projection matrix onto S.
(a) Find a function whose zeros correspond to the eigenvalues for the 2×2 matrix induced by $\boldsymbol{P}_{S} A \boldsymbol{P}_{S}$.
(b) Explicitly find the eigenvalues for the induced matrix.
3. Let $\boldsymbol{A}_{0} \in \mathcal{M}_{n}(\mathbb{F})$ be simple and Hermitian. Let $V \in \mathcal{M}_{n \times k}$ for $1 \leq k<n$ be an orthogonal matrix. Consider the matrix

$$
A=A_{0}+\epsilon V V^{\mathrm{H}}, \quad|\epsilon| \ll 1 .
$$

(a) Verify that A is Hermitian.
(b) Label the real eigenvalues as $\lambda_{j}=\lambda_{j}^{0}+\epsilon \lambda_{j}^{1}+\mathcal{O}\left(\epsilon^{2}\right)$ for $j=1, \ldots, n$. Determine λ_{j}^{1}.
(c) Show that $\lambda_{j}^{1} \geq 0$ for each j.
(d) What condition is needed for $\lambda_{j}^{1}=0$?
(e) How does the set of eigenvalues for A relate to the set of eigenvalues for A_{0} ?

