Math 355 Homework Problems \#0

Notation. In all that follows, $\mathbb{F}=\mathbb{R}$, or \mathbb{C}. The notation is used when it makes no difference if the numbers are real-valued or complex-valued. The symbol $\mathcal{M}_{m \times n}(\mathbb{F})$ represents the set of all matrices with m rows and n columns where the entries are in \mathbb{F}. Finally, the symbol \mathbb{F}^{n} represents the set of all vectors of length n with entries in \mathbb{F}.

1. Consider the homogeneous system $A \boldsymbol{x}=\mathbf{0}$, where $\boldsymbol{A} \in \mathcal{M}_{m \times n}(\mathbb{F})$ with $m<n$. Explain why this system must always have an infinite number of solutions.
2. Consider the nonhomogeneous system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{A} \in \mathcal{M}_{m \times n}(\mathbb{F})$ and $\boldsymbol{b} \in \mathbb{F}^{m}$ is nonzero.
(a) If x_{1} and x_{2} are two solutions, must it be the case that $3 x_{1}-4 x_{2}$ is also a solution? Why, or why not?
(b) Suppose that $m \geq n$, and further suppose that the system is consistent. What must the rowreduced matrix look like if the solution is unique?
3. Find all of the solutions to the system

$$
\begin{aligned}
x-3 y-4 z & =-6 \\
2 x+4 z & =-6 \\
-6 x+4 y+4 z & =22 .
\end{aligned}
$$

If the system is not consistent, state why.
4. Find eigenvalues and associated eigenvectors for the following matrices:
(a) $\left(\begin{array}{rr}0 & 1 \\ -2 & -3\end{array}\right)$
(b) $\left(\begin{array}{rrr}0 & 1 & 0 \\ -6 & 5 & 0 \\ 3 & 4 & 7\end{array}\right)$

