Math 355 Homework Problems #9

1. Let $A \in \mathcal{M}_n(\mathbb{F})$ be semi-simple. For each eigenvalue λ_j let v_j be an associated eigenvector, and let w_j be an associated adjoint eigenvector. Assume the adjoint eigenvectors are scaled so that

$$\langle \boldsymbol{w}_j, \boldsymbol{v}_k \rangle = \begin{cases} 0, & j \neq k \\ 1, & j = k. \end{cases}$$

For each j set $P_j = v_j w_j^H$ to be the rank one spectral projection matrix. For a given $1 \le \ell \le n$ set

$$Q = P_1 + P_2 + \cdots + P_{\ell}.$$

- (a) What is a basis for Ran(Q)?
- (b) What is a basis for ker(Q)?
- (c) Show that $Q^2 = Q$.
- (d) Show that QA = AQ.
- (e) Show that $QA^{D} = A^{D}Q$.
- **2.** In Problem **1** suppose that $\ell = \text{rank}(A)$. Show that $AA^{D} = A^{D}A = Q$.
- 3. Let $A = \begin{pmatrix} 0 & 2 \\ 6 & 1 \end{pmatrix}$.
 - (a) Find the spectral decomposition of A.
 - (b) Find the spectral decomposition of A^{-1} .
 - (c) Find the spectral decomposition of e^{At} .
- **4.** Let $A \in \mathcal{M}_n(\mathbb{F})$ be simple. Prove the following properties of the Drazin inverse, $A^{\mathbb{D}}$:
 - (a) $(A^{D})^{D} = A^{2}A^{D} = A$.
 - (b) $(A^{D})^{n} = (A^{n})^{D}$ for any positive integer n
 - (c) $A^{D} = A$ if and only if $A^{3} = A$.
- **5.** Let $A, B \in \mathcal{M}_n(\mathbb{F})$ be simple and similar, i.e., there is an invertible matrix P such that $A = PBP^{-1}$. Show that A^D is similar to B^D .
- **6.** Compute the Drazin inverse of $A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$.