Math 355 Homework Problems \#9

1. Let $A \in \mathcal{M}_{n}(\mathbb{F})$ be semi-simple. For each eigenvalue λ_{j} let \boldsymbol{v}_{j} be an associated eigenvector, and let w_{j} be an associated adjoint eigenvector. Assume the adjoint eigenvectors are scaled so that

$$
\left\langle\boldsymbol{w}_{j}, \boldsymbol{v}_{k}\right\rangle= \begin{cases}0, & j \neq k \\ 1, & j=k .\end{cases}
$$

For each j set $\boldsymbol{P}_{j}=\boldsymbol{v}_{j} \boldsymbol{w}_{j}^{\mathrm{H}}$ to be the rank one spectral projection matrix. For a given $1 \leq \ell \leq n$ set

$$
Q=P_{1}+P_{2}+\cdots+P_{\ell} .
$$

(a) What is a basis for $\operatorname{Ran}(Q)$?
(b) What is a basis for $\operatorname{ker}(Q)$?
(c) Show that $Q^{2}=Q$.
(d) Show that $Q A=A Q$.
(e) Show that $Q A^{\mathrm{D}}=\boldsymbol{A}^{\mathrm{D}} \boldsymbol{Q}$.
2. In Problem 1 suppose that $\ell=\operatorname{rank}(A)$. Show that $A A^{\mathrm{D}}=A^{\mathrm{D}} A=Q$.
3. Let $A=\left(\begin{array}{ll}0 & 2 \\ 6 & 1\end{array}\right)$.
(a) Find the spectral decomposition of \boldsymbol{A}.
(b) Find the spectral decomposition of A^{-1}.
(c) Find the spectral decomposition of $\mathrm{e}^{A t}$.
4. Let $\boldsymbol{A} \in \mathcal{M}_{n}(\mathbb{F})$ be simple. Prove the following properties of the Drazin inverse, $\boldsymbol{A}^{\mathrm{D}}$:
(a) $\left(A^{\mathrm{D}}\right)^{\mathrm{D}}=A^{2} A^{\mathrm{D}}=A$.
(b) $\left(A^{\mathrm{D}}\right)^{n}=\left(\boldsymbol{A}^{n}\right)^{\mathrm{D}}$ for any positive integer n
(c) $A^{\mathrm{D}}=A$ if and only if $A^{3}=A$.
5. Let $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{M}_{n}(\mathbb{F})$ be simple and similar, i.e., there is an invertible matrix \boldsymbol{P} such that $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{B} \boldsymbol{P}^{-1}$. Show that $\boldsymbol{A}^{\mathrm{D}}$ is similar to $\boldsymbol{B}^{\mathrm{D}}$.
6. Compute the Drazin inverse of $A=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)$.

