Math 355 Homework Problems \#8

1. Consider the matrix $A=\left(\begin{array}{rrrr}-4 & -2 & -4 & -2 \\ 2 & -2 & 2 & 1 \\ -4 & 1 & -4 & -2\end{array}\right)$.
(a) What is $\operatorname{rank}(A)$?
(b) Let $r=\operatorname{rank}(A)$. Compute the SVD, $\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\mathrm{H}}$, where

$$
\boldsymbol{U} \in \mathcal{M}_{3 \times r}(\mathbb{F}), \quad \Sigma \in \mathcal{M}_{r}(\mathbb{F}), \quad V \in \mathcal{M}_{4 \times r}(\mathbb{F}) .
$$

(c) Provide an orthonormal basis for $\operatorname{Ran}(A)$.
(d) Provide an orthonormal basis for $\operatorname{Ran}\left(\boldsymbol{A}^{\mathrm{H}}\right)$.
(e) Compute the Moore-Penrose pseudo-inverse.
2. Let $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ have the SVD outer product expansion,

$$
\boldsymbol{A}=\sum_{j=1}^{r} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{\mathrm{H}}, \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0
$$

Show that the Moore-Penrose pseudo-inverse of A is

$$
\boldsymbol{A}^{+}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} \boldsymbol{v}_{j} \boldsymbol{u}_{j}^{\mathrm{H}} .
$$

3. Let $A \in \mathcal{M}_{n}(\mathbb{F})$ be invertible and have the SVD outer product expansion,

$$
\boldsymbol{A}=\sum_{j=1}^{n} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{\mathrm{H}}, \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0 .
$$

Let \boldsymbol{B} be a lower rank approximation,

$$
\boldsymbol{B}=\sum_{j=1}^{s} \sigma_{j} \boldsymbol{u}_{j} \boldsymbol{v}_{j}^{\mathrm{H}} \quad \leadsto \boldsymbol{B}^{+}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} \boldsymbol{v}_{j} \boldsymbol{u}_{j}^{\mathrm{H}} .
$$

Show that

$$
\left\|\left(\boldsymbol{A}^{-1}-\boldsymbol{B}^{\dagger}\right) \boldsymbol{b}\right\| \geq \frac{1}{\sigma_{s+1}}\left(\sum_{j=s+1}^{r}\left|b_{j}\right|^{2}\right)^{1 / 2}, \quad b_{j}=\left\langle\boldsymbol{u}_{j}, \boldsymbol{b}\right\rangle .
$$

In other words, the exact solution, $\boldsymbol{A}^{-1} \boldsymbol{b}$, to the linear system, $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, is not necessarily close to the normal equations solution, $\boldsymbol{B}^{\dagger} \boldsymbol{b}$, of the approximate system, $\boldsymbol{B} \boldsymbol{x}=\boldsymbol{b}$.

