Math 355 Homework Problems \#7

For all that follows, recall that:
(a) if $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{M}_{n}(\mathbb{F})$ are similar, $\boldsymbol{A}=\boldsymbol{P}^{-1} \boldsymbol{B} \boldsymbol{P}$, then $\boldsymbol{A}^{k}=\boldsymbol{P}^{-1} \boldsymbol{B}^{k} \boldsymbol{P}$ for $k=1,2, \ldots$
(b) if A is simple, then the eigenvalues are distinct
(c) if \boldsymbol{A} is semisimple, then the eigenvectors form a basis.

1. Suppose that $A \in \mathcal{M}_{n}(\mathbb{F})$ is semisimple with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
(a) Let

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{F}_{n}[x]
$$

be any polynomial. Prove the Semisimple Spectral Mapping Theorem: the eigenvalues of

$$
p(\boldsymbol{A})=a_{0} \boldsymbol{I}_{n}+a_{1} \boldsymbol{A}+a_{2} \boldsymbol{A}^{2}+\cdots+a_{n} \boldsymbol{A}^{n}
$$

are $\left\{p\left(\lambda_{1}\right), p\left(\lambda_{2}\right), \ldots, p\left(\lambda_{n}\right)\right\}$.
(b) Show that $p_{A}(A)=\boldsymbol{0}_{n}$, where $p_{A}(\lambda)$ is the characteristic polynomial for the matrix \boldsymbol{A}.
2. Let

$$
A=\left(\begin{array}{ll}
0.8 & 0.4 \\
0.2 & 0.6
\end{array}\right)
$$

(a) Compute the eigenvalues of the matrix $3 I_{2}+5 A+A^{3}$.
(b) Compute $\lim _{n \rightarrow+\infty} A^{n}$.
3. Let $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{M}_{n}(\mathbb{F})$ commute, $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$.
(a) Show that if $\boldsymbol{\lambda}$ is an eigenvalue of \boldsymbol{A} with associated eigenvector \boldsymbol{v}, then $\boldsymbol{B} \boldsymbol{v}$ is also an associated eigenvector.
(b) Further suppose that \boldsymbol{A} is simple. Show that \boldsymbol{B} is semisimple.
4. If $\lambda \in \sigma(\boldsymbol{A})$, show that $a \lambda \in \sigma(a \boldsymbol{A})$.
5. Suppose $\boldsymbol{J} \in \mathcal{M}_{n}(\mathbb{F})$ is skew-Hermitian, $\boldsymbol{J}^{\mathrm{H}}=-\boldsymbol{J}$.
(a) Show that iJ is Hermitian.
(b) Show that $\sigma(J) \subset i \mathbb{R}$, i.e., all of the eigenvalues of J are purely imaginary (Hint: consider the matrix iJ)
(c) If $\mathbb{F}=\mathbb{R}$ and n is odd, show that $\{0\} \subset \sigma(J)$.

