Math 355 Homework Problems #7

For all that follows, recall that:

- (a) if $A, B \in \mathcal{M}_n(\mathbb{F})$ are similar, $A = P^{-1}BP$, then $A^k = P^{-1}B^kP$ for k = 1, 2, ...
- (b) if *A* is simple, then the eigenvalues are distinct
- (c) if *A* is semisimple, then the eigenvectors form a basis.

1. Suppose that $A \in \mathcal{M}_n(\mathbb{F})$ is semisimple with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

(a) Let

$$p(x) = a_0 + a_1 x + \dots + a_n x^n \in \mathbb{F}_n[x]$$

be any polynomial. Prove the Semisimple Spectral Mapping Theorem: the eigenvalues of

$$p(\mathbf{A}) = a_0 \mathbf{I}_n + a_1 \mathbf{A} + a_2 \mathbf{A}^2 + \dots + a_n \mathbf{A}^n$$

are $\{p(\lambda_1), p(\lambda_2), \dots, p(\lambda_n)\}.$

(b) Show that $p_A(A) = 0_n$, where $p_A(\lambda)$ is the characteristic polynomial for the matrix A.

2. Let

$$A = \left(\begin{array}{cc} 0.8 & 0.4 \\ 0.2 & 0.6 \end{array} \right).$$

- (a) Compute the eigenvalues of the matrix $3I_2 + 5A + A^3$.
- (b) Compute $\lim_{n \to +\infty} A^n$.

3. Let $A, B \in \mathcal{M}_n(\mathbb{F})$ commute, AB = BA.

- (a) Show that if λ is an eigenvalue of A with associated eigenvector v, then Bv is also an associated eigenvector.
- (b) Further suppose that *A* is simple. Show that *B* is semisimple.

4. If $\lambda \in \sigma(A)$, show that $a\lambda \in \sigma(aA)$.

5. Suppose $J \in \mathcal{M}_n(\mathbb{F})$ is skew-Hermitian, $J^{\mathrm{H}} = -J$.

- (a) Show that i*J* is Hermitian.
- (b) Show that $\sigma(J) \subset i\mathbb{R}$, i.e., all of the eigenvalues of J are purely imaginary (*Hint*: consider the matrix iJ)
- (c) If $\mathbb{F} = \mathbb{R}$ and *n* is odd, show that $\{0\} \subset \sigma(J)$.