Math 355 Homework Problems \#6

1. Find an orthonormal basis for each of the four fundamental subspaces of

$$
A=\left(\begin{array}{rrr}
1 & 3 & 5 \\
-1 & 4 & 2 \\
0 & 5 & 5 \\
3 & -4 & 2
\end{array}\right) \in \mathcal{M}_{4 \times 3}(\mathbb{R})
$$

2. Find the quadratic curve of best fit for the data $(-1,2),(0,-1),(1,1),(2,3),(3,7),(1,-2),(2,5)$.
3. Let the inner product on $\mathcal{M}_{n}(\mathbb{F})$ be given by

$$
\langle\boldsymbol{A}, \boldsymbol{B}\rangle=\operatorname{trace}\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{B}\right)=\sum_{j=1}^{n} \boldsymbol{a}_{j}^{\mathrm{H}} \boldsymbol{b}_{j},
$$

where $\boldsymbol{A}=\left(\boldsymbol{a}_{1} \boldsymbol{a}_{2} \cdots \boldsymbol{a}_{n}\right)$ and $\boldsymbol{B}=\left(\boldsymbol{b}_{1} \boldsymbol{b}_{2} \cdots \boldsymbol{b}_{n}\right)$. Let $\boldsymbol{E}_{j k} \in \mathcal{M}_{n}(\mathbb{F})$ for $j, k=1, \ldots, n$ be the matrix with a one in the $j k$ entry, and zero everywhere else. Show that:
(a) each $\boldsymbol{E}_{j k}$ is a rank one matrix
(b) $\left\langle\boldsymbol{E}_{j k}, \boldsymbol{E}_{\ell m}\right\rangle= \begin{cases}0, & (\ell, m) \neq(j, k) \\ 1, & (\ell, m)=(j, k)\end{cases}$
(c) $\left\{\boldsymbol{E}_{j k}\right\}$ is an orthonormal basis for $\mathcal{M}_{n}(\mathbb{F})$.
4. Suppose that $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{M}_{n}(\mathbb{F})$ are similar, i.e., $\boldsymbol{A}=\boldsymbol{P}^{-1} \boldsymbol{B} \boldsymbol{P}$ for some invertible matrix \boldsymbol{P}. Show that for any integer $k, \boldsymbol{A}^{k}=\boldsymbol{P}^{-1} \boldsymbol{B}^{k} \boldsymbol{P}$.

