Math 355 Homework Problems \#5

1. Let $S \subset \mathbb{F}^{n}$ be a subspace with orthonormal basis $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$. Let

$$
\boldsymbol{P}_{S}=\boldsymbol{U} \boldsymbol{U}^{\mathrm{H}}, \quad \boldsymbol{U}=\left(\boldsymbol{u}_{1} \boldsymbol{u}_{2} \cdots \boldsymbol{u}_{k}\right),
$$

be the orthogonal projection matrix using this basis. Set

$$
\boldsymbol{P}_{S^{\perp}}=\boldsymbol{I}_{n}-\boldsymbol{P}_{S} .
$$

Show that:
(a) $\boldsymbol{P}_{S^{\perp}} \cdot \boldsymbol{P}_{S^{\perp}}=\boldsymbol{P}_{S^{\perp}}$
(b) $\operatorname{ker}\left(\boldsymbol{P}_{S^{\perp}}\right)=S$
(c) $\operatorname{Ran}\left(\boldsymbol{P}_{S^{\perp}}\right)=S^{\perp}$
(d) $\boldsymbol{P}_{S} \cdot \boldsymbol{P}_{S^{\perp}}=\boldsymbol{P}_{S^{\perp}} \cdot \boldsymbol{P}_{S}=\boldsymbol{0}_{n}$.
2. Let $\left\{1+3 x^{2}, 1-6 x^{2}\right\}$ be a basis for a subspace S of the vector space $\mathbb{R}_{2}[x]$, which has the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x
$$

Find the orthogonal projection of x onto S.
3. Find the $Q R$-factorization for

$$
A=\left(\begin{array}{rr}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right)
$$

