Math 355 Homework Problems #4

1. Let

$$S = \text{Span}\{1 - 3x + 4x^2, 2 + 5x - x^2, 6 + 4x + 6x^2\} \subset \mathbb{R}_2[x]$$

$$T = \text{Span}\{1 + 2x + 6x^2, 5 + 18x - 7x^2, 2 + 12x - 25x^2\} \subset \mathbb{R}_2[x].$$

- (a) Find a basis for *S*.
- (b) Find a basis for *T*.
- (c) Find a basis for $S \cap T$.
- (d) Determine dim[S + T].

2. Let $\{(1-x)^4, x^2(1-x)^2\}$ be a basis for a subspace $S \subset \mathbb{F}_4[x]$. Find a basis for a subspace $W \subset \mathbb{F}_4[x]$ such that $\mathbb{F}_4[x] = S \oplus W$.

3. Let the inner product on $\mathbb{R}_5[x]$ be given by

$$\langle f,g\rangle = \int_0^1 f(x)g(x)\,\mathrm{d}x.$$

- (a) Find the length of x^3 .
- (b) Find the angle between x and x^5 .
- (c) Find the angle between x^2 and x^4 .

4. Let $\langle \cdot, \cdot \rangle$ be the standard inner product on \mathbb{F}^n , $\langle x, y \rangle = x^H y$. Let $A \in \mathcal{M}_n(\mathbb{F})$. Show that $\langle Ax, y \rangle = \langle x, A^H y \rangle$. (hint: recall that $(AB)^H = B^H A^H$)

5. Let $\langle \cdot, \cdot \rangle$ be the standard inner product on \mathbb{F}^n , $\langle x, y \rangle = x^H y$. Let a norm on \mathbb{F}^n induced by this inner product be denoted $\|\cdot\|_2$,

$$\|\boldsymbol{x}\|_2^2 = \langle \boldsymbol{x}, \boldsymbol{x} \rangle.$$

A matrix $Q \in \mathcal{M}_n(\mathbb{F})$ is an orthonormal matrix if the columns of Q form an orthonormal basis for \mathbb{F}^n . Show that:

- (a) $\boldsymbol{Q}^{\mathrm{H}}\boldsymbol{Q} = \boldsymbol{Q}\boldsymbol{Q}^{\mathrm{H}} = \boldsymbol{I}_{n}$
- (b) $\|Qx\|_2 = \|x\|_2$ (the linear transformation preserves norm)
- (c) $\langle Qx, Qy \rangle = \langle x, y \rangle$ (the linear transformation preserves angle)
- (d) $|\det(Q)| = 1$.

6. Let $x, y \in \mathbb{F}^n$ be nonzero vectors, and let $a \in \mathbb{F}$.

- (a) Show that $rank(yx^{H}) = 1$.
- (b) What is a basis for $Ran(yx^H)$?
- (c) If $ax^{H}y \neq 1$, show that

$$(\mathbf{I}_n - a\mathbf{y}\mathbf{x}^{\mathrm{H}})^{-1} = \mathbf{I}_n + \frac{a}{1 - a\mathbf{x}^{\mathrm{H}}\mathbf{y}}\mathbf{y}\mathbf{x}^{\mathrm{H}}.$$