Math 355 Homework Problems \#4

1. Let

$$
\begin{aligned}
& S=\operatorname{Span}\left\{1-3 x+4 x^{2}, 2+5 x-x^{2}, 6+4 x+6 x^{2}\right\} \subset \mathbb{R}_{2}[x] \\
& T=\operatorname{Span}\left\{1+2 x+6 x^{2}, 5+18 x-7 x^{2}, 2+12 x-25 x^{2}\right\} \subset \mathbb{R}_{2}[x] .
\end{aligned}
$$

(a) Find a basis for S.
(b) Find a basis for T.
(c) Find a basis for $S \cap T$.
(d) Determine $\operatorname{dim}[S+T]$.
2. Let $\left\{(1-x)^{4}, x^{2}(1-x)^{2}\right\}$ be a basis for a subspace $S \subset \mathbb{F}_{4}[x]$. Find a basis for a subspace $W \subset \mathbb{F}_{4}[x]$ such that $\mathbb{F}_{4}[x]=S \oplus W$.
3. Let the inner product on $\mathbb{R}_{5}[x]$ be given by

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x
$$

(a) Find the length of x^{3}.
(b) Find the angle between x and x^{5}.
(c) Find the angle between x^{2} and x^{4}.
4. Let $\langle\cdot, \cdot\rangle$ be the standard inner product on $\mathbb{F}^{n},\langle x, y\rangle=x^{\mathrm{H}} \boldsymbol{y}$. Let $A \in \mathcal{M}_{n}(\mathbb{F})$. Show that $\langle\boldsymbol{A x}, \boldsymbol{y}\rangle=\left\langle\boldsymbol{x}, \boldsymbol{A}^{\mathrm{H}} \boldsymbol{y}\right\rangle$. (hint: recall that $(\boldsymbol{A B})^{\mathrm{H}}=\boldsymbol{B}^{\mathrm{H}} \boldsymbol{A}^{\mathrm{H}}$)
5. Let $\langle\cdot, \cdot\rangle$ be the standard inner product on $\mathbb{F}^{n},\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\boldsymbol{x}^{\mathrm{H}} \boldsymbol{y}$. Let a norm on \mathbb{F}^{n} induced by this inner product be denoted $\|\cdot\|_{2}$,

$$
\|x\|_{2}^{2}=\langle\boldsymbol{x}, \boldsymbol{x}\rangle .
$$

A matrix $Q \in \mathcal{M}_{n}(\mathbb{F})$ is an orthonormal matrix if the columns of Q form an orthonormal basis for \mathbb{F}^{n}. Show that:
(a) $Q^{\mathrm{H}} \boldsymbol{Q}=\boldsymbol{Q} \boldsymbol{Q}^{\mathrm{H}}=\boldsymbol{I}_{n}$
(b) $\|Q x\|_{2}=\|x\|_{2}$ (the linear transformation preserves norm)
(c) $\langle Q x, Q y\rangle=\langle x, y\rangle$ (the linear transformation preserves angle)
(d) $|\operatorname{det}(Q)|=1$.
6. Let $x, y \in \mathbb{F}^{n}$ be nonzero vectors, and let $a \in \mathbb{F}$.
(a) Show that $\operatorname{rank}\left(y x^{\mathrm{H}}\right)=1$.
(b) What is a basis for $\operatorname{Ran}\left(y x^{\mathrm{H}}\right)$?
(c) If $a x^{\mathrm{H}} y \neq 1$, show that

$$
\left(I_{n}-a y x^{\mathrm{H}}\right)^{-1}=I_{n}+\frac{a}{1-a x^{\mathrm{H}} y} y x^{\mathrm{H}} .
$$

