Math 355 Homework Problems \#3

1. Consider the linear transformation

$$
\mathcal{L}=x^{3} \frac{\mathrm{~d}}{\mathrm{~d} x}-2 x^{2}+x \int_{0}^{1} \cdot \mathrm{~d} x: \operatorname{Span}\left\{1+2 x, 3 x+5 x^{2}, 3-x^{2}\right\} \mapsto \operatorname{Span}\left\{1, x, x^{2}, x^{3}, x^{4}\right\} .
$$

Find a basis for $\operatorname{ker}(\mathcal{L})$ and $\operatorname{Ran}(\mathcal{L})$.
2. Consider the linear transformation $\mathcal{L}: \mathbb{F}_{2}[x] \mapsto \mathcal{M}_{2}(\mathbb{F})$ given by

$$
a_{0}+a_{1} x+a_{2} x^{2} \mapsto\left(\begin{array}{cc}
a_{0}-a_{1}+a_{2} & 2 a_{0}+4 a_{2} \\
-a_{0}+2 a_{1} & 3 a_{0}+5 a_{1}+11 a_{2}
\end{array}\right) .
$$

Find a basis for $\operatorname{ker}(\mathcal{L})$ and $\operatorname{Ran}(\mathcal{L})$.
3. Let

$$
B_{1}=\left\{(1-x)^{2}, 2 x(1-x), x^{2}\right\}, \quad B_{2}=\left\{1, x, 3 x^{2}-1\right\}, \quad B_{3}=\left\{1, x, x^{2}\right\},
$$

be three bases for $\mathbb{F}_{2}[x]$. Let $\mathcal{I}: \mathbb{F}_{2}[x] \mapsto \mathbb{F}_{2}[x]$ be the identity map, i.e., $\mathcal{I}(p)=p$. Also, let V_{j} denote the space $\mathbb{F}_{2}[x]$ with basis B_{j}.
(a) Find the matrix representation, \boldsymbol{A}_{1}, for $\mathcal{I}: V_{1} \mapsto V_{3}$.
(b) Find the matrix representation, \boldsymbol{C}_{1}, for $\mathcal{I}: V_{3} \mapsto V_{1}$. How does \boldsymbol{C}_{1} relate to \boldsymbol{A}_{1} ?
(c) Find the matrix representation, \boldsymbol{A}_{2}, for $\mathcal{I}: V_{2} \mapsto V_{3}$.
(d) Find the matrix representation, \boldsymbol{C}_{2}, for $\mathcal{I}: V_{3} \mapsto V_{2}$. How does \boldsymbol{C}_{2} relate to \boldsymbol{A}_{2} ?
(e) Find the matrix representation for $\mathcal{I}: V_{2} \mapsto V_{1}$.
(f) If $p(x)=a_{1}+a_{2} x+a_{3}\left(3 x^{2}-1\right)$, find constants b_{1}, b_{2}, b_{3} such that $p(x)=b_{1}(1-x)^{2}+2 b_{2} x(1-x)+b_{3} x^{2}$.
(g) Find the matrix representation for $\mathcal{I}: V_{1} \mapsto V_{2}$.
(h) If $p(x)=a_{1}(1-x)^{2}+2 a_{2} x(1-x)+a_{3} x^{2}$, find constants b_{1}, b_{2}, b_{3} such that $p(x)=b_{1}+b_{2} x+b_{3}\left(3 x^{2}-1\right)$.

