Math 355 Homework Problems \#2

1. Let $\mathcal{L}_{1}, \mathcal{L}_{2}: V \mapsto W$ be linear transformations. Show that

$$
a_{1} \mathcal{L}_{1}+a_{2} \mathcal{L}_{2}: V \mapsto W, \quad a_{1}, a_{2} \in \mathbb{F}
$$

is also a linear transformation.
2. Let $\mathcal{L}: V \mapsto W$ be a linear transformation. Show that:
(a) $\operatorname{ker}(\mathcal{L})$ is a subspace of V
(b) $\operatorname{Ran}(\mathcal{L})$ is a subspace of W
3. Let

$$
S=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}, \quad S^{+}=\left\{w_{1}, w_{2}, \ldots, w_{k}, \boldsymbol{v}\right\}
$$

be two sets of vectors from a vector space V. Show that $\operatorname{Span}(S)=\operatorname{Span}\left(S^{+}\right)$if and only if $\boldsymbol{v} \in \operatorname{Span}(S)$.
4. Let $V \cong W$ with isomorphism $\mathcal{L}: V \mapsto W$. Show that if the set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\} \subset V$ is linearly independent, then so is the $\operatorname{set}\left\{\mathcal{L}\left(\boldsymbol{v}_{1}\right), \ldots, \mathcal{L}\left(\boldsymbol{v}_{k}\right)\right\} \subset W$.
5. Let $\mathcal{L}_{1}: V_{1} \mapsto V_{2}$ and $\mathcal{L}_{2}: V_{2} \mapsto V_{3}$ be invertible linear maps. Show that $\left(\mathcal{L}_{2} \mathcal{L}_{1}\right)^{-1}=\mathcal{L}_{1}^{-1} \mathcal{L}_{2}^{-1}$.
6. Let $\mathcal{L}: V \mapsto V$ be a linear operator such that $\mathcal{L}^{2}=\mathcal{L}$ (here $\left.\mathcal{L}^{2}=\mathcal{L} \circ \mathcal{L}\right)$. Such a mapping is said to be a projection operator. Show that:
(a) $\operatorname{ker}(\mathcal{L}) \cap \operatorname{Ran}(\mathcal{L})=\{\boldsymbol{0}\}$
(b) if $v \in V$ is given, then there are $x \in \operatorname{ker}(\mathcal{L}), y \in \operatorname{Ran}(\mathcal{L})$ such that $v=x+y$
(c) $V=\operatorname{ker}(\mathcal{L}) \oplus \operatorname{Ran}(\mathcal{L})$.
7. The first four Legendre polynomials are given by

$$
f_{1}(x)=1, f_{2}(x)=x, f_{3}(x)=3 x^{2}-1, f_{4}(x)=5 x^{3}-3 x
$$

(a) Show that $\left\{f_{1}, \ldots, f_{4}\right\}$ is a basis for $\mathbb{F}_{3}[x]$.
(b) If possible, find the unique linear combination of these Legendre polynomials which fit the data $(1,3),(2,4),(3,1),(4,-2)$. If it is not possible, explain why.

