Math 355 Homework Problems #10

1. Determine the spectral decomposition for the resolvent of the matrix $\begin{pmatrix} 0 & 2 \\ 6 & 1 \end{pmatrix}$.

2. Consider the matrix

1	(0	1	2		(1	2	-1)
A =	-6	-5	2	$+\epsilon$	0	5	1
	0	0	5) (3	-2	4)

Label the eigenvalues as $\lambda_j = \lambda_j^0 + \epsilon \lambda_j^1 + \mathcal{O}(\epsilon^2)$ for j = 1, 2, 3. Determine the constants λ_j^1 .

3. For a given $x, y \in \mathbb{F}^n$ set $A = yx^H$ (*A* is a rank-one matrix). Show that:

- (a) if $x^H y \neq 0$, then $\sigma(A) = \{0, x^H y\}$, where zero is an eigenvalue of geometric and algebraic multiplicity n 1 (*hint*: do not consider the characteristic equation; instead, find the eigenvectors)
- (b) $\sigma(I_n + aA) = \{1, 1 + ax^Hy\}$, where one is an eigenvalue of geometric and algebraic multiplicity n-1 (*hint*: do not consider the characteristic equation; instead, find the eigenvectors)
- (c) $I_n + aA$ is invertible as long as $a \neq -\frac{1}{x^H y}$.

4. Let $A \in \mathcal{M}_n(\mathbb{F})$ be simple with the distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. For a given $1 \le \ell \le n$ let v_ℓ be an associated eigenvector, $Av_\ell = \lambda_\ell v_\ell$. For a given $x \in \mathbb{F}^n$ set $B = A + v_\ell x^H$ (*B* is a rank-one perturbation of *A*). Assume that $x^H v_\ell \ne 0$. Show that:

- (a) $\lambda I_n B = (\lambda I_n A)C(\lambda)$, where $C(\lambda) = I_n (\lambda I_n A)^{-1} v_\ell x^H$ (assume that the resolvent makes sense)
- (b) $C(\lambda) = I_n \frac{1}{\lambda \lambda_\ell} v_\ell x^H$
- (c) $C(\lambda)$ is invertible for $\lambda \neq \lambda_{\ell} + x^{H}v_{\ell}$ (of course, it is not well-defined when $\lambda = \lambda_{\ell}$)
- (d) the eigenvalues of **B** are given by $\{\lambda_1, \dots, \lambda_{\ell-1}, \lambda_\ell + \mathbf{x}^H \mathbf{v}_\ell, \lambda_{\ell+1}, \dots, \lambda_n\}$ (*hint*: the eigenvalue problem $(\lambda \mathbf{I}_n \mathbf{B})\mathbf{v} = \mathbf{0}$ is equivalent to a system of equations).

5. Let $A_0 \in \mathcal{M}_n(\mathbb{F})$ be simple and Hermitian. Let $V \in \mathcal{M}_{n \times k}$ for $1 \le k < n$ have full rank, rank(V) = k. Consider the matrix

$$A = A_0 + \epsilon V V^{\mathrm{H}}, \quad |\epsilon| \ll 1.$$

- (a) Verify that *A* is Hermitian.
- (b) Label the real eigenvalues as $\lambda_j = \lambda_i^0 + \epsilon \lambda_i^1 + \mathcal{O}(\epsilon^2)$ for j = 1, ..., n. Determine λ_i^1 .
- (c) Show that $\lambda_j^1 \ge 0$ for each *j*.
- (d) What condition is needed for $\lambda_i^1 = 0$?
- (e) How do the eigenvalues for *A* relate to those for A_0 ?