Math 355 Homework Problems \#10

1. Determine the spectral decomposition for the resolvent of the matrix $\left(\begin{array}{ll}0 & 2 \\ 6 & 1\end{array}\right)$.
2. Consider the matrix

$$
A=\left(\begin{array}{rrr}
0 & 1 & 2 \\
-6 & -5 & 2 \\
0 & 0 & 5
\end{array}\right)+\epsilon\left(\begin{array}{rrr}
1 & 2 & -1 \\
0 & 5 & 1 \\
3 & -2 & 4
\end{array}\right)
$$

Label the eigenvalues as $\lambda_{j}=\lambda_{j}^{0}+\epsilon \lambda_{j}^{1}+\mathcal{O}\left(\epsilon^{2}\right)$ for $j=1,2,3$. Determine the constants λ_{j}^{1}.
3. For a given $x, y \in \mathbb{F}^{n}$ set $A=y x^{\mathrm{H}}(A$ is a rank-one matrix). Show that:
(a) if $x^{\mathrm{H}} y \neq 0$, then $\sigma(A)=\left\{0, x^{\mathrm{H}} y\right\}$, where zero is an eigenvalue of geometric and algebraic multiplicity $n-1$ (hint: do not consider the characteristic equation; instead, find the eigenvectors)
(b) $\sigma\left(\boldsymbol{I}_{n}+a \boldsymbol{A}\right)=\left\{1,1+a \boldsymbol{x}^{\mathrm{H}} y\right\}$, where one is an eigenvalue of geometric and algebraic multiplicity $n-1$ (hint: do not consider the characteristic equation; instead, find the eigenvectors)
(c) $\boldsymbol{I}_{n}+a \boldsymbol{A}$ is invertible as long as $a \neq-\frac{1}{\boldsymbol{x}^{\mathrm{H}} \boldsymbol{y}}$.
4. Let $A \in \mathcal{M}_{n}(\mathbb{F})$ be simple with the distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. For a given $1 \leq \ell \leq n$ let \boldsymbol{v}_{ℓ} be an associated eigenvector, $\boldsymbol{A} \boldsymbol{v}_{\ell}=\lambda_{\ell} \boldsymbol{v}_{\ell}$. For a given $\boldsymbol{x} \in \mathbb{F}^{n}$ set $\boldsymbol{B}=\boldsymbol{A}+\boldsymbol{v}_{\ell} \boldsymbol{x}^{\mathrm{H}}$ (\boldsymbol{B} is a rank-one perturbation of A). Assume that $x^{\mathrm{H}} \boldsymbol{v}_{\ell} \neq 0$. Show that:
(a) $\lambda \boldsymbol{I}_{n}-\boldsymbol{B}=\left(\lambda \boldsymbol{I}_{n}-\boldsymbol{A}\right) \boldsymbol{C}(\lambda)$, where $\boldsymbol{C}(\lambda)=\boldsymbol{I}_{n}-\left(\lambda \boldsymbol{I}_{n}-\boldsymbol{A}\right)^{-1} \boldsymbol{v}_{\ell} \boldsymbol{x}^{\mathrm{H}}$ (assume that the resolvent makes sense)
(b) $C(\lambda)=I_{n}-\frac{1}{\lambda-\lambda_{\ell}} v_{\ell} x^{\mathrm{H}}$
(c) $C(\lambda)$ is invertible for $\lambda \neq \lambda_{\ell}+x^{\mathrm{H}} \boldsymbol{v}_{\ell}$ (of course, it is not well-defined when $\lambda=\lambda_{\ell}$)
(d) the eigenvalues of \boldsymbol{B} are given by $\left\{\lambda_{1}, \ldots, \lambda_{\ell-1}, \lambda_{\ell}+\boldsymbol{x}^{\mathrm{H}} \boldsymbol{v}_{\ell}, \lambda_{\ell+1}, \ldots, \lambda_{n}\right\}$ (hint: the eigenvalue problem $\left(\lambda \boldsymbol{I}_{n}-\boldsymbol{B}\right) \boldsymbol{v}=\boldsymbol{0}$ is equivalent to a system of equations).
5. Let $A_{0} \in \mathcal{M}_{n}(\mathbb{F})$ be simple and Hermitian. Let $\boldsymbol{V} \in \mathcal{M}_{n \times k}$ for $1 \leq k<n$ have full $\operatorname{rank}, \operatorname{rank}(\boldsymbol{V})=k$. Consider the matrix

$$
A=A_{0}+\epsilon V V^{\mathrm{H}}, \quad|\epsilon| \ll 1
$$

(a) Verify that \boldsymbol{A} is Hermitian.
(b) Label the real eigenvalues as $\lambda_{j}=\lambda_{j}^{0}+\epsilon \lambda_{j}^{1}+\mathcal{O}\left(\epsilon^{2}\right)$ for $j=1, \ldots, n$. Determine λ_{j}^{1}.
(c) Show that $\lambda_{j}^{1} \geq 0$ for each j.
(d) What condition is needed for $\lambda_{j}^{1}=0$?
(e) How do the eigenvalues for A relate to those for A_{0} ?

