Math 355 Homework Problems \#1

1. Do the following form subspaces of $\mathbb{F}_{4}[x]$? Prove, or give a counter-example.
(a) The subset of all polynomials in $\mathbb{F}_{4}[x]$ of even degree.
(b) The subset of all polynomials $p(x)$ in $\mathbb{F}_{4}[x]$ with $p(0)=0$.
(c) The subset of all polynomials $p(x)$ in $\mathbb{F}_{4}[x]$ with $p^{\prime}(0) \neq 0$.
2. Which of each set below is a spanning set for $\mathbb{F}_{2}[x]$? Justify your answer in each case.
(a) $\left\{1, x-1, x^{2}+1\right\}$.
(b) $\left\{x+2, x-2, x^{2}-2\right\}$.
(c) $\left\{1+2 x+3 x^{2}, 4+5 x+6 x^{2}, 7+8 x+9 x^{2}\right\}$.
3. If $A \in \mathcal{M}_{n}(\mathbb{F})$, the transpose of \boldsymbol{A}, denoted $\boldsymbol{A}^{\mathrm{T}}$, is the matrix where the $j^{\text {th }}$ column of \boldsymbol{A} is the $j^{\text {th }}$ row of $\boldsymbol{A}^{\mathrm{T}}$. Let $\operatorname{Sym}_{n}(\mathbb{F}) \subset \mathcal{M}_{n}(\mathbb{F})$ denote the set of symmetric matrices. In other words, $A \in \operatorname{Sym}_{n}(\mathbb{F})$ if and only if $A=A^{\mathrm{T}}$. Let $\operatorname{Skew}_{n}(\mathbb{F}) \subset \mathcal{M}_{n}(\mathbb{F})$ denote the set of skew-symmetric matrices. In other words, $\boldsymbol{A} \in \operatorname{Skew}_{n}(\mathbb{F})$ if and only if $\boldsymbol{A}=-\boldsymbol{A}^{\mathrm{T}}$.
(a) Show that $\operatorname{Sym}_{n}(\mathbb{F})$ is a subspace.
(b) Show that $\operatorname{Skew}_{n}(\mathbb{F})$ is a subspace.
(c) Show that $\mathcal{M}_{n}(\mathbb{F})=\operatorname{Sym}_{n}(\mathbb{F}) \oplus \operatorname{Skew}_{n}(\mathbb{F})$.
4. Write $\mathbb{F}_{5}[x]$ as the direct sum of 6 one-dimensional subspaces.
5. Write $\mathcal{M}_{2}(\mathbb{F})$ as the direct sum of 4 one-dimensional subspaces.
6. Let $W_{1}, W_{2}, \ldots, W_{n}$ be a collection of subspaces of the vector space V. Show that

$$
\bigcap_{j=1}^{n} W_{j}=W_{1} \cap W_{2} \cap \cdots \cap W_{n}
$$

is a subspace.

