Math 355 Homework Problems #1

1. Do the following form subspaces of $\mathbb{F}_4[x]$? Prove, or give a counter-example.

- (a) The subset of all polynomials in $\mathbb{F}_4[x]$ of even degree.
- (b) The subset of all polynomials p(x) in $\mathbb{F}_4[x]$ with p(0) = 0.
- (c) The subset of all polynomials p(x) in $\mathbb{F}_4[x]$ with $p'(0) \neq 0$.

2. Which of each set below is a spanning set for $\mathbb{F}_2[x]$? Justify your answer in each case.

- (a) $\{1, x 1, x^2 + 1\}$.
- (b) $\{x+2, x-2, x^2-2\}$.
- (c) $\{1 + 2x + 3x^2, 4 + 5x + 6x^2, 7 + 8x + 9x^2\}$.

3. If $A \in \mathcal{M}_n(\mathbb{F})$, the transpose of A, denoted A^T , is the matrix where the j^{th} column of A is the j^{th} row of A^T . Let $\text{Sym}_n(\mathbb{F}) \subset \mathcal{M}_n(\mathbb{F})$ denote the set of symmetric matrices. In other words, $A \in \text{Sym}_n(\mathbb{F})$ if and only if $A = A^T$. Let $\text{Skew}_n(\mathbb{F}) \subset \mathcal{M}_n(\mathbb{F})$ denote the set of skew-symmetric matrices. In other words, $A \in \text{Skew}_n(\mathbb{F})$ if and only if $A = -A^T$.

- (a) Show that $\text{Sym}_n(\mathbb{F})$ is a subspace.
- (b) Show that $\operatorname{Skew}_n(\mathbb{F})$ is a subspace.
- (c) Show that $\mathcal{M}_n(\mathbb{F}) = \operatorname{Sym}_n(\mathbb{F}) \oplus \operatorname{Skew}_n(\mathbb{F})$.
- **4.** Write $\mathbb{F}_5[x]$ as the direct sum of 6 one-dimensional subspaces.
- **5.** Write $\mathcal{M}_2(\mathbb{F})$ as the direct sum of 4 one-dimensional subspaces.

6. Let W_1, W_2, \ldots, W_n be a collection of subspaces of the vector space V. Show that

$$\bigcap_{j=1}^{n} W_j = W_1 \cap W_2 \cap \dots \cap W_n$$

is a subspace.