Math 355 Homework Problems \#0

1. Consider a cubic function of the form $y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$.
(a) Is it possible for this function to pass through the three points $(0,1),(1,1)$, and $(2,7)$? If so, is the function unique? If not, why not?
(b) Is it possible for this function to pass through the four points $(0,1),(1,1),(2,7)$, and $(3,31)$? If so, is the function unique? If not, why not?
(c) Is it possible for this function to pass through the five points $(-2,-29),(-1,-5),(0,1),(1,1)$, and $(2,7)$? If so, is the function unique? If not, why not?
2. Consider the homogeneous system $\boldsymbol{A x}=\mathbf{0}$, where $\boldsymbol{A} \in \mathcal{M}_{m \times n}$ with $m<n$. Explain why this system must always have an infinite number of solutions.
3. Consider the nonhomogeneous system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where $\boldsymbol{A} \in \mathcal{M}_{m \times n}(\mathbb{F})$ and $\boldsymbol{b} \in \mathbb{F}^{m}$ is nonzero.
(a) If x_{1} and x_{2} are two solutions, must it be the case that $3 x_{1}-4 x_{2}$ is also a solution? Why, or why not?
(b) Suppose that $m \geq n$, and further suppose that the system is consistent. What must the rowreduced matrix look like if the solution is unique?
4. Find all of the solutions to the system

$$
\begin{aligned}
x-3 y-4 z & =-6 \\
2 x+4 z & =-6 \\
-6 x+4 y+4 z & =22 .
\end{aligned}
$$

If the system is not consistent, state why.
5. Find eigenvalues and associated eigenvectors for the following matrices:
(a) $\left(\begin{array}{rr}0 & 1 \\ -2 & -3\end{array}\right)$
(b) $\left(\begin{array}{rrr}0 & 1 & 0 \\ -6 & 5 & 0 \\ 3 & 4 & 7\end{array}\right)$

