Math 355 Homework Problems #5

1. Suppose that \(A, B \in \mathcal{M}_n(\mathbb{F}) \) are similar with \(A = P^{-1}BP \). Show that for any integer \(k \), \(A^k = P^{-1}B^kP \).

2. Suppose that \(A \in \mathcal{M}_n(\mathbb{F}) \) is semisimple with eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \).

 (a) Let \(p(x) = a_0 + a_1x + \cdots + a_nx \in \mathbb{F}_n[x] \) be any polynomial. Prove the Semisimple Spectral Mapping Theorem: the eigenvalues of \(p(A) = a_0I_n + a_1A + a_2A^2 + \cdots + a_nA^n \) are \(\{p(\lambda_1), p(\lambda_2), \ldots, p(\lambda_n)\} \). (Hint: Use Problem 1)

 (b) Show that \(p_A(A) = 0_n \), where \(p_A(\lambda) \) is the characteristic polynomial for the matrix \(A \).

3. Let \(A = \begin{pmatrix} 0.8 & 0.4 \\ 0.2 & 0.6 \end{pmatrix} \).

 (a) Compute the eigenvalues of the matrix \(3I_2 + 5A + A^3 \).

 (b) Compute \(\lim_{n \to +\infty} A^n \).

4. Let \(A, B \in \mathcal{M}_n(\mathbb{F}) \) commute, \(AB = BA \).

 (a) Show that if \(\lambda \) is an eigenvalue of \(A \) with associated eigenvector \(v \), then \(Bv \) is also an associated eigenvector.

 (b) Further suppose that \(A \) is simple. Show that \(B \) is semisimple.

5. Suppose \(J \in \mathcal{M}_n(\mathbb{F}) \) is skew-Hermitian, \(J^H = -J \).

 (a) Show that \(\sigma(J) \subset i\mathbb{R} \), i.e., all of the eigenvalues of \(J \) are purely imaginary (Hint: consider the matrix \(iJ \))

 (b) If \(\mathbb{F} = \mathbb{R} \) and \(n \) is odd, show that \(\{0\} \subset \sigma(J) \).