Math 333 Homework Problems \#1

Applied Partial Differential Equations: A Dynamics Perspective

1.8.2, 1.8.6, 1.8.4, 1.8.7, 1.8.8

4. This is a revision of Problem 1.8.1. Consider the random walk derivation given in Chapter 1.2.2.
(a) Suppose the probability of moving left is p_{ℓ}, and the probability of moving right is $p_{r}=1-p_{\ell}$. Assume $p_{r} \neq p_{\ell}$. If $\Delta t=A \Delta x$, show that in the limit $\Delta x \rightarrow 0$ the governing PDE is an advection equation. What is the speed of propagation, c ?
(b) In part (a) suppose that $p_{\ell}-p_{r}=B \Delta x$, where $B \neq 0$. If $\Delta t=(\Delta x)^{2} /(2 D)$, show that in the limit $\Delta x \rightarrow 0$ the governing PDE is an advection-diffusion equation. What is the speed of propagation, c ?
(c) Let p_{ℓ} be the probability of moving left, p_{r} the probability of moving right, and p_{s} the probability of staying. The probabilities sum to one. Assume $p_{s}=A(\Delta x)^{2}, p_{\ell}-p_{r}=B \Delta x$, where $A, B \neq 0$. If $\Delta t=(\Delta x)^{2} /(2 D)$, show that in the limit $\Delta x \rightarrow 0$ the governing PDE is an advection-diffusion-growth PDE.
