Math 333 Homework Problems \#8
 Applied Partial Differential Equations (3rd Edition), by J.D. Logan

1. Consider Laplace's equation on a pie-shaped region,

$$
\Delta u=0, \quad 0 \leq r \leq 1,0 \leq \theta \leq \frac{\pi}{2}
$$

with the boundary conditions,

$$
u(r, 0)=\partial_{\theta} u(r, \pi / 2)=0, \quad u(1, \theta)=\theta(\pi-\theta)
$$

Find the series solution, and in doing so explicitly compute the Fourier coefficients.
2. Consider Laplace's equation on a pie-shaped region,

$$
\Delta u=0, \quad 0 \leq r \leq 1,0 \leq \theta \leq \frac{\pi}{3}
$$

with the boundary conditions,

$$
\partial_{\theta} u(r, 0)=\partial_{\theta} u(r, \pi / 3)=0, \quad u(1, \theta)= \begin{cases}1, & 0 \leq \theta<\pi / 6 \\ 0, & \pi / 6 \leq \theta \leq \pi / 3\end{cases}
$$

Find the series solution, and in doing so explicitly compute the Fourier coefficients.
3. Find the series solution to the advection-diffusion equation,

$$
\partial_{t} u=2 \partial_{x}^{2} u+8 \partial_{x} u, \quad u(x, 0)=x^{2}
$$

with the boundary conditions,

$$
2 u(0, t)+\partial_{x} u(0, t)=0, \quad u(1, t)=0 .
$$

Explicitly compute the Fourier coefficients.
4. Consider the advection-diffusion equation,

$$
\partial_{t} u=\partial_{x}^{2} u+6 \partial_{x} u, \quad u(x, 0)=1,
$$

with the boundary conditions,

$$
3 u(0, t)+\partial_{x} u(0, t)=0, \quad u(1, t)=5 .
$$

(a) Find the steady-state solution, $U(x)$ (hint: first transform the problem to remove the advection term).
(b) Setting $u(x, t)=U(x)+z(x, t)$, find the PDE and boundary conditions for the perturbation of the steadystate, $z(x, t)$.
(c) Find the series for the function $z(x, t)$. Explicitly compute the Fourier coefficients.
(d) What is $\lim _{t \rightarrow+\infty} u(x, t)$? Provide a reason for your answer.

