Math 333 Homework Problems \#7

Applied Partial Differential Equations (3rd Edition), by J.D. Logan

1. Find the eigenvalues and associated normalized eigenfunctions for the Helmholtz eigenvalue problem,

$$
\Delta v=\lambda v, \quad(x, y) \in[0,1] \times[0, H]
$$

subject to the following boundary conditions:
(a) $v(0, y)=v(1, y)=\partial_{y} v(x, 0)=v(x, H)=0$
(b) $v(0, y)=\partial_{x} v(1, y)=v(x, 0)=v(x, H)=0$
(c) $\partial_{x} v(0, y)=v(1, y)=\partial_{y} v(x, 0)=\partial_{y} v(x, H)=0$
2. Consider the forced wave equation on the square $(x, y) \in[0,1] \times[0,1]$,

$$
\begin{aligned}
\partial_{t}^{2} u & =c^{2} \Delta u+\sin (\pi x) \sin (3 \pi y) \cos (2 t) \\
u(x, y, 0) & =7 \sin (4 \pi x) \sin (2 \pi y) \\
\partial_{t} u(x, y, 0) & =6 \sin (2 \pi x) \sin (5 \pi y)
\end{aligned}
$$

subject to the boundary conditions,

$$
u(0, y, t)=u(1, y, t)=u(x, 0, t)=u(x, 1, t)=0
$$

Find the series solution computing the Fourier coefficients explicitly, and write it using as few terms as possible.
3. Consider the heat equation on the rectangle $(x, y) \in[0,1] \times[0,2]$,

$$
\partial_{t} u=k \Delta u, \quad u(x, y, 0)=\sin ^{2}(2 \pi x) \cos ^{2}\left(\frac{\pi}{2} y\right)
$$

subject to the boundary conditions,

$$
\partial_{x} u(0, y, t)=\partial_{x} u(1, y, t)=\partial_{y} u(x, 0, t)=\partial_{y} u(x, 2, t)=0
$$

(a) Find the series solution computing the Fourier coefficients explicitly.
(b) Determine $\lim _{t \rightarrow+\infty} u(x, y, t)$.
4. Consider Poisson's equation on the square $(x, y) \in[0,1] \times[0,1]$,

$$
\Delta u=x(2-x) y(1-y)
$$

subject to the boundary conditions,

$$
u(0, y)=\partial_{x} u(1, y)=u(x, 0)=u(x, 1)=0
$$

Find the series solution, and compute the Fourier coefficients explicitly.

