Math 333 Homework Problems \#6

Applied Partial Differential Equations (3rd Edition), by J.D. Logan

1. Find the series solution to the wave equation,

$$
\partial_{t}^{2} u=c^{2} \partial_{x}^{2} u, \quad u(x, 0)=\sin ^{2}(\pi x), \partial_{t} u(x, 0) \equiv 0
$$

with the Dirichlet boundary conditions,

$$
u(0, t)=u(1, t)=0
$$

2. Find the series solution to the wave equation

$$
\partial_{t}^{2} u=c^{2} \partial_{x}^{2} u, \quad u(x, 0) \equiv 0, \partial_{t} u(x, 0)=8 x^{2}(1-x)^{2}
$$

with the Neumann boundary conditions,

$$
\partial_{x} u(0, t)=\partial_{x} u(1, t)=0 .
$$

3. Consider the wave equation,

$$
\partial_{t}^{2} u=c^{2} \partial_{x}^{2} u, \quad u(x, 0)=u_{0}(x), \partial_{t} u(x, 0)=u_{1}(x)
$$

with Neumann-Dirichlet boundary conditions,

$$
\partial_{x} u(0, t)=u(1, t)=0 .
$$

(a) Find the series solution.
(b) The solution is time periodic for fixed x. What is the period?
(c) The solution can be represented using d'Alembert's formula,

$$
u(x, t)=\frac{1}{2} u_{0}^{\mathrm{per}}(x-c t)+\frac{1}{2} u_{0}^{\mathrm{per}}(x+c t)+\frac{1}{2 c} \int_{x-c t}^{x+c t} u_{1}^{\mathrm{per}}(s) \mathrm{d} s .
$$

Given a cartoon of $u_{0,1}(x)$, draw a cartoon of $u_{0,1}^{\mathrm{per}}(x)$ over one period. What is the period of $u_{0,1}^{\mathrm{per}}(x)$? Are $u_{0,1}^{\text {per }}(x)$ even or odd?
4. Find the series solution to the heat equation,

$$
\partial_{t} u=\frac{1}{2} \partial_{x}^{2} u, \quad u(x, 0)=2 x-x^{2}
$$

with the Dirichlet-Neumann boundary conditions,

$$
u(0, t)=\partial_{x} u(1, t)=0
$$

