Math 333 Homework Problems \#5

Applied Partial Differential Equations (3rd Edition), by J.D. Logan

1. Consider the heat equation

$$
\partial_{t} u=4 \partial_{x}^{2} u, \quad u(x, 0)= \begin{cases}0, & 0 \leq x<1 / 2 \\ 1, & 1 / 2 \leq x \leq 1\end{cases}
$$

with the Dirichlet boundary conditions

$$
u(0, t)=u(1, t)=0
$$

(a) Find the series solution, $u(x, t)=\sum_{j=1}^{\infty} u_{j}(t) v_{j}(x)$.
(b) For a given $N \geq 1$ let the partial sum be denoted

$$
u_{N}(x, t):=\sum_{j=1}^{N} u_{j}(t) v_{j}(x)
$$

Find the smallest number N such that for $t \geq 0.01$,

$$
\left\|u(x, t)-u_{N}(x, t)\right\| \leq 10^{-4}, \quad\|f\|^{2}=\int_{0}^{1} f(x)^{2} \mathrm{~d} x
$$

2. Consider the heat equation

$$
\partial_{t} u=\frac{1}{9} \partial_{x}^{2} u, \quad u(x, 0)=x(x-2),
$$

with the mixed boundary conditions

$$
u(0, t)=\partial_{x} u(1, t)=0
$$

(a) Find the series solution, $u(x, t)=\sum_{j=1}^{\infty} u_{j}(t) v_{j}(x)$.
(b) For a given $N \geq 1$ let the partial sum be denoted

$$
u_{N}(x, t):=\sum_{j=1}^{N} u_{j}(t) v_{j}(x)
$$

Find the smallest number N such that for $t \geq 0.05$,

$$
\left\|u(x, t)-u_{N}(x, t)\right\| \leq 10^{-3}, \quad\|f\|^{2}=\int_{0}^{1} f(x)^{2} \mathrm{~d} x
$$

3. Solve the heat equation,

$$
\partial_{t} u=\partial_{x}^{2} u, \quad u(x, 0)=0
$$

with the nonhomogeneous boundary conditions,

$$
\partial_{x} u(0, t)=0, \quad u(1, t)=\sin (t)
$$

4. Consider the general heat equation,

$$
c(x) \rho(x) \partial_{t} u=\partial_{x}\left[K(x) \partial_{x} u\right], \quad u(x, 0)=u_{0}(x)
$$

with the Neumann boundary conditions

$$
\partial_{x} u(0, t)=\partial_{x} u(1, t)=0 .
$$

The norm for the problem is

$$
\|f\|^{2}=\int_{0}^{1} f(x)^{2} \cdot c(x) \rho(x) \mathrm{d} x
$$

The solution to the heat equation is the generalized Fourier series,

$$
u(x, t)=\sum_{j=1}^{\infty} u_{j}(t) v_{j}(x)
$$

For a given $N \geq 1$ the partial sum approximation is

$$
u_{N}(x, t)=\sum_{j=1}^{N} u_{j}(t) v_{j}(x) .
$$

Suppose the thin rod is composed of gold (G) for $0 \leq x \leq 1 / 2$, and one of copper (C), iron (I), or aluminum (A) for the other half. Consider the following table of material properties:

	$c(\mathrm{kcal} / \mathrm{g})$	$\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$K_{0}(\mathrm{kcal} / \mathrm{cm} / \mathrm{sec})$	$k=K_{0} /(c \rho)$
Aluminum (A)	2.15×10^{-4}	2.70	4.90×10^{-4}	0.84
Copper (C)	0.92×10^{-4}	8.96	9.58×10^{-4}	1.16
Gold (G)	1.08×10^{-4}	19.32	1.91×10^{-4}	0.09
Iron (I)	0.31×10^{-4}	7.87	7.40×10^{-4}	3.03

(a) Show that the weighted total thermal energy is conserved,

$$
\int_{0}^{1} u(x, t) \cdot c(x) \rho(x) \mathrm{d} x=\int_{0}^{1} u_{0}(x) \cdot c(x) \rho(x) \mathrm{d} x\left(=\overline{u_{0}}\right), \quad t \geq 0
$$

(b) For each of the composites $\mathrm{G} / \mathrm{C}, \mathrm{G} / \mathrm{I}, \mathrm{G} /$ A find a minimal $\gamma>0$ such that

$$
\left\|u(x, t)-\overline{u_{0}}\right\| \leq \mathrm{e}^{-\gamma t}\left\|u_{0}-\overline{u_{0}}\right\| .
$$

(c) For each of the composites G/C, G/I, G/A find a $\gamma>0$ such that

$$
\left\|u(x, t)-u_{4}(x, t)\right\| \leq \mathrm{e}^{-\gamma t}\left\|u_{0}\right\| .
$$

(d) For each of the composites G/C, G/I, G/A find a minimal $N \geq 1$ such that

$$
\left\|u(x, t)-u_{N}(x, t)\right\| \leq 10^{-4}\left\|u_{0}\right\|, \quad t \geq 0.03
$$

