Math 333 Homework Problems \#4
 Applied Partial Differential Equations (3rd Edition), by J.D. Logan

1. Consider the SL problem,

$$
\left[p(x) v^{\prime}\right]^{\prime}-q(x) v=\lambda w(x) v,
$$

with the separated boundary conditions,

$$
a_{0} v(0)+a_{1} v^{\prime}(0)=0, \quad b_{0} v(1)+b_{1} v^{\prime}(1)=0 .
$$

Assume $a_{0}, b_{0}, b_{1} \geq 0, a_{1} \leq 0$, and $q(x) \geq 0$. Show that:
(a) the eigenvalues are nonpositive
(b) if $a_{0}>0$ and/or $b_{0}>0$, then the eigenvalues are strictly negative.
2. Find the eigenvalues and associated normalized eigenfunctions for the SL problem,

$$
v^{\prime \prime}=\lambda v, \quad v(0)=v^{\prime}(1)=0 .
$$

3. Find the eigenvalues and associated normalized eigenfunctions for the SL problem,

$$
v^{\prime \prime}=\lambda v, \quad v^{\prime}(0)=v(1)=0 .
$$

4. Consider the two SL problems,

$$
\left[p(x) v^{\prime}\right] v^{\prime}=\lambda v,
$$

and

$$
\left[p(x) v^{\prime}\right] v^{\prime}-q_{0}^{2} v=\lambda v,
$$

where $q_{0}>0$ is a constant. Suppose that each problem has the same separated boundary conditions,

$$
a_{0} v(0)+a_{1} v^{\prime}(0)=0, \quad b_{0} v(1)+b_{1} v^{\prime}(1)=0
$$

Show that if λ_{0} is an eigenvalue for the first problem with associated eigenfunction v_{0}, then $\lambda_{0}-q_{0}^{2}$ is an eigenvalue for the second problem with the same associated eigenfunction v_{0}.
5. Here we explore the effect of the diffusion coefficient on the value of the eigenvalues. Consider the two SL problems,

$$
k v^{\prime \prime}=\lambda v,
$$

and

$$
v^{\prime \prime}=\lambda v .
$$

Suppose that each problem has the same separated boundary conditions,

$$
a_{0} v(0)+a_{1} v^{\prime}(0)=0, \quad b_{0} v(1)+b_{1} v^{\prime}(1)=0
$$

How do the eigenvalues/eigenfunctions of the first problem relate to those of the second? (Hint: rescale the spectral parameter in the first eigenvalue problem)

