Math 333 Homework Problems \#3

Applied Partial Differential Equations (3rd Edition), by J.D. Logan

1. The goal here is to find an approximation of the second-derivative in the case that the step size is not uniform. Suppose we know a function $f(x)$ at the points $x, x-h_{\ell}, x+h_{r}$. If $h_{\ell}=h_{r}=h$, then

$$
\begin{aligned}
f^{\prime}(x) & \sim \frac{f(x+h)-f(x-h)}{2 h} \\
f^{\prime \prime}(x) & \sim \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
\end{aligned}
$$

Suppose that $h_{\ell} \neq h_{r}$.
(a) What is an estimating expression for $f^{\prime}(x)$ using $f\left(x+h_{r}\right), f\left(x-h_{\ell}\right)$?
(b) What is an estimating expression for $f^{\prime \prime}(x)$ using $f\left(x+h_{r}\right), f\left(x-h_{\ell}\right), f(x)$?
(Hint: derive a Taylor polynomial for $\left.f\left(x+h_{r}\right), f\left(x-h_{\ell}\right)\right)$
2. Consider the heat equation

$$
\begin{aligned}
& \partial_{t} u=\partial_{x}^{2} u-r^{2} u+T_{0} r^{2} \\
& u(0, t)=0, \quad u(1, t)=0 .
\end{aligned}
$$

Here $r>0$ is a constant which describes the rate at which the bar loses its heat across the lateral boundary, and $T_{0}>0$ is the external temperature. The steady-state temperature, $U(x)$, is a solution to the ODE

$$
U^{\prime \prime}-r^{2} U+T_{0} r^{2}=0 ; \quad U(0)=U(1)=0
$$

(a) Find an explicit expression for the steady-state temperature. At which point is the bar the hottest?
(b) Upon setting

$$
u(x, t)=U(x)+w(x, t)
$$

derive a PDE for $w(x, t)$. What is the forcing function associated with the PDE for $w(\mathrm{x}, \mathrm{t})$? Show that

$$
\int_{0}^{1} w(x, t)^{2} \mathrm{~d} x \leq \int_{0}^{1}\left[u_{0}(x)-U(x)\right]^{2} \mathrm{~d} x
$$

(c) Give a conjecture regarding $\lim _{t \rightarrow+\infty} w(x, t)$.
3. Consider the heat equation

$$
\partial_{t} u=4 \partial_{x}^{2} u-r(x) u+T_{\mathrm{ext}} r(x), \quad u(x, 0)=0
$$

with the boundary conditions,

$$
3 u(0, t)-0.5 \partial_{x} u(0, t)=0, \quad 0.4 u(1, t)+\partial_{x} u(1, t)=0 .
$$

Set

$$
T_{\mathrm{ext}}=6, \quad r(x)=2[H(x-0.6)-H(x-0.8)],
$$

where $H(x-c)$ is the Heaviside (step) function.
(a) Suppose that in order to approximate ∂_{x}^{2} using the finite difference scheme on the unit interval it has been decided that one needs $N=64$. What value of N should be used to approximate $4 \partial_{x}^{2}$?
(b) Simulate the solution using the value of N chosen in part (a), and provide plots of $u(x, t)$ for $t \in\{0,0.1,0.20,0.3\}$. Does the solution approach a steady-state solution?
(c) Repeat part (b) using $T_{\text {ext }}=-4$.
(d) Is there a qualitative difference in the solution plots of part (b) compared to those of part (c)?

