Math 333 Homework Problems \#2

Applied Partial Differential Equations (3rd Edition), by J.D. Logan

1. The total energy for the linear wave equation for a homogeneous string,

$$
\partial_{t}^{2} u=c^{2} \partial_{x}^{2} u, \quad u(0, t)=u(1, t)=0
$$

is

$$
E(t)=\int_{0}^{1}\left[\left(\partial_{t} u\right)^{2}+c^{2}\left(\partial_{x} u\right)^{2}\right] \mathrm{d} x
$$

Show that the total energy is conserved. Hint:
(a) multiply the wave equation by $\partial_{t} u$
(b) note that $\partial_{t} u \partial_{t}^{2} u=\partial_{t}\left(\partial_{t} u\right)^{2} / 2$
(c) note that $\partial_{x}\left(\partial_{t} u \partial_{x} u\right)=\partial_{t} u \partial_{x}^{2} u+\partial_{x t}^{2} u \partial_{x} u$
(d) use integration-by-parts
2. Rewrite the following PDEs so that the interval $0 \leq x \leq L$ becomes the unit interval, $0 \leq y \leq 1$:
(a) $\partial_{t} u=4 \partial_{x}^{2} u+\mathrm{e}^{-t} \cos (2 x), \quad u(x, 0)=(8-x)^{2}$

$$
u(0, t)-2 \partial_{x} u(0, t)=0,3 u(8, t)+4 \partial_{x} u(8, t)=2+\cos (t)
$$

(b) $\partial_{t} u=72 \partial_{x}^{2} u-\operatorname{sech}(x-6) u, \quad u(x, 0)=3 \mathrm{e}^{-(x-12)}$

$$
u(0, t)=2-\mathrm{e}^{-t} \cos (4 t), 2 u(12, t)+\partial_{x} u(12, t)=0
$$

3. Rewrite the following PDEs so that the boundary conditions are homogeneous:
(a) $\partial_{t} u=2 \partial_{x}^{2} u-u+7 \mathrm{e}^{-(t-x)}, \quad u(x, 0)=3-\sin (4 \pi x)$

$$
u(0, t)-2 \partial_{x} u(0, t)=0,3 u(1, t)+4 \partial_{x} u(1, t)=2+\cos (t)
$$

(b) $\partial_{t} u=\partial_{x}^{2} u-\operatorname{sech}(x-1 / 2) u, \quad u(x, 0)=2$

$$
u(0, t)=2-\mathrm{e}^{-t} \cos (4 t), 2 u(1, t)+\partial_{x} u(1, t)=0
$$

