ODE Cheat Sheet for Math 331

Scalar linear first-order ODEs

For the linear first-order ODE,

$$
\dot{x}=a(t) x+f(t),
$$

set,

$$
A(t)=\int a(t) \mathrm{d} t
$$

to get the general solution,

$$
x(t)=c_{1} \mathrm{e}^{A(t)}+\mathrm{e}^{A(t)} \int \mathrm{e}^{-A(t)} f(t) \mathrm{d} t .
$$

If $a(t) \equiv a$, the solution is,

$$
x(t)=c_{1} \mathrm{e}^{a t}+\mathrm{e}^{a t} \int \mathrm{e}^{-a t} f(t) \mathrm{d} t
$$

Scalar linear second-order homogeneous ODEs

For the homogeneous linear second-order ODE,

$$
\ddot{x}+p \dot{x}+q x=0,
$$

the associated characteristic equation is,

$$
\lambda^{2}+p \lambda+q=0 .
$$

Let λ_{1}, λ_{2} be the roots of the characteristic equation. If $\lambda_{1} \neq \lambda_{2}$ are real, the homogeneous solution is,

$$
x_{\mathrm{h}}(t)=c_{1} \mathrm{e}^{\lambda_{1} t}+c_{2} \mathrm{e}^{\lambda_{2} t} .
$$

If $\lambda_{1}=\lambda_{2}=-p / 2$, which requires $p^{2}=4 q$, the homogeneous solution is,

$$
x_{\mathrm{h}}(t)=c_{1} \mathrm{e}^{-p t / 2}+c_{2} t \mathrm{e}^{-p t / 2} .
$$

If $\lambda_{1}=a+\mathrm{i} b$ with $b \neq 0$, the homogeneous solution is,

$$
x_{\mathrm{h}}(t)=c_{1} \mathrm{e}^{a t} \cos (b t)+c_{2} \mathrm{e}^{a t} \sin (b t) .
$$

We have the following classification of the fixed point, $(x, \dot{x})=(0,0)$:
(a) $\lambda_{1}<0<\lambda_{2}$: unstable saddle point
(b) $\lambda_{1}<\lambda_{2}<0$: stable node
(c) $0<\lambda_{1}<\lambda_{2}$: unstable node
(d) if $\lambda_{1}=a+\mathrm{i} b(b \neq 0)$,

- $a<0$: stable spiral
- $a>0$: unstable spiral
- $a=0$: linear center.

Scalar linear second-order nonhomogeneous ODEs

For the nonhomogeneous linear second-order ODE,

$$
\ddot{x}+p \dot{x}+q x=f(t),
$$

the solution is the sum of the homogeneous and particular solutions,

$$
x(t)=x_{\mathrm{h}}(t)+x_{\mathrm{p}}(t) .
$$

Write the homogeneous solution as,

$$
x_{\mathrm{h}}(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)
$$

and set,

$$
\Phi(t)=x_{1}(t) x_{2}^{\prime}(t)-x_{2}(t) x_{1}^{\prime}(t) .
$$

The particular solution is given by the variation of parameters formula,

$$
x_{\mathrm{p}}(t)=-\left(\int \frac{x_{2}(t) f(t)}{\Phi(t)} \mathrm{d} t\right) x_{1}(t)+\left(\int \frac{x_{1}(t) f(t)}{\Phi(t)} \mathrm{d} t\right) x_{2}(t) .
$$

First-order homogeneous linear system of ODEs

Consider the homogeneous first-order system,

$$
\dot{\boldsymbol{x}}=\boldsymbol{A} \boldsymbol{x}, \quad \boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

The eigenvalues of \boldsymbol{A} are λ_{1}, λ_{2}, and the associated eigenvectors are $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$,

$$
\boldsymbol{A} \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}, \quad \boldsymbol{A} \boldsymbol{v}_{2}=\lambda_{1} v_{2}
$$

If the eigenvalues are real the general solution is,

$$
\boldsymbol{x}(t)=c_{1} \mathrm{e}^{\lambda_{1} t} \boldsymbol{v}_{1}+c_{2} \mathrm{e}^{\lambda_{2} t} \boldsymbol{v}_{2}
$$

If $\lambda_{1}=a+\mathrm{i} b(b \neq 0)$ with associated eigenvector $\boldsymbol{v}_{1}=\boldsymbol{p}+\mathrm{i} \boldsymbol{q}$, the general solution is,

$$
\boldsymbol{x}(t)=c_{1} \mathrm{e}^{a t}(\cos (b t) \boldsymbol{p}-\sin (b t) \boldsymbol{q})+c_{2} \mathrm{e}^{a t}(\sin (b t) \boldsymbol{p}+\cos (b t) \boldsymbol{q}) .
$$

We have the following classification of the fixed point, $\boldsymbol{x}=\mathbf{0}$:
(a) $\lambda_{1}<0<\lambda_{2}$: unstable saddle point
(b) $\lambda_{1}<\lambda_{2}<0$: stable node
(c) $0<\lambda_{1}<\lambda_{2}$: unstable node
(d) if $\lambda_{1}=a+\mathrm{i} b(b \neq 0)$,

- $a<0$: stable spiral
- $a>0$: unstable spiral
- $a=0$: linear center.

