ODE Cheat Sheet for Math 331

Scalar linear first-order ODEs

For the linear first-order ODE,

set,

$$A(t) = \int a(t) \, \mathrm{d}t,$$

 $\dot{x} = a(t)x + f(t),$

to get the general solution,

$$x(t) = c_1 e^{A(t)} + e^{A(t)} \int e^{-A(t)} f(t) dt.$$

If $a(t) \equiv a$, the solution is,

Scalar linear second-order homogeneous ODEs

 $x(t) = c_1 e^{at} + e^{at} \int e^{-at} f(t) dt.$

For the homogeneous linear second-order ODE,

$$\ddot{x} + p\dot{x} + qx = 0,$$

the associated characteristic equation is,

$$\lambda^2 + p\lambda + q = 0.$$

Let λ_1, λ_2 be the roots of the characteristic equation. If $\lambda_1 \neq \lambda_2$ are real, the homogeneous solution is,

$$x_{\rm h}(t) = c_1 \mathrm{e}^{\lambda_1 t} + c_2 \mathrm{e}^{\lambda_2 t}$$

If $\lambda_1 = \lambda_2 = -p/2$, which requires $p^2 = 4q$, the homogeneous solution is,

$$x_{\rm h}(t) = c_1 {\rm e}^{-pt/2} + c_2 t {\rm e}^{-pt/2}$$

If $\lambda_1 = a + ib$ with $b \neq 0$, the homogeneous solution is,

$$x_{\rm h}(t) = c_1 \mathrm{e}^{at} \cos(bt) + c_2 \mathrm{e}^{at} \sin(bt).$$

We have the following classification of the fixed point, $(x, \dot{x}) = (0, 0)$:

- (a) $\lambda_1 < 0 < \lambda_2$: unstable saddle point
- (b) $\lambda_1 < \lambda_2 < 0$: stable node
- (c) $0 < \lambda_1 < \lambda_2$: unstable node
- (d) if $\lambda_1 = a + ib (b \neq 0)$,
 - *a* < 0: stable spiral
 - *a* > 0: unstable spiral
 - *a* = 0: *linear* center.

Scalar linear second-order nonhomogeneous ODEs

For the nonhomogeneous linear second-order ODE,

$$\ddot{x} + p\dot{x} + qx = f(t),$$

the solution is the sum of the homogeneous and particular solutions,

$$x(t) = x_{\rm h}(t) + x_{\rm p}(t).$$

Write the homogeneous solution as,

$$x_{\rm h}(t) = c_1 x_1(t) + c_2 x_2(t),$$

and set,

$$\Phi(t) = x_1(t)x_2'(t) - x_2(t)x_1'(t).$$

The particular solution is given by the variation of parameters formula,

$$x_{\mathrm{p}}(t) = -\left(\int \frac{x_2(t)f(t)}{\Phi(t)} \mathrm{d}t\right) x_1(t) + \left(\int \frac{x_1(t)f(t)}{\Phi(t)} \mathrm{d}t\right) x_2(t).$$

First-order homogeneous linear system of ODEs

Consider the homogeneous first-order system,

$$\dot{x} = Ax, \quad A = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right).$$

The eigenvalues of *A* are λ_1, λ_2 , and the associated eigenvectors are v_1, v_2 ,

$$Av_1 = \lambda_1 v_1, \quad Av_2 = \lambda_1 v_2.$$

If the eigenvalues are real the general solution is,

$$\boldsymbol{x}(t) = c_1 \mathrm{e}^{\lambda_1 t} \boldsymbol{v}_1 + c_2 \mathrm{e}^{\lambda_2 t} \boldsymbol{v}_2$$

If $\lambda_1 = a + ib (b \neq 0)$ with associated eigenvector $v_1 = p + iq$, the general solution is,

$$\boldsymbol{x}(t) = c_1 e^{at} \left(\cos(bt) \boldsymbol{p} - \sin(bt) \boldsymbol{q} \right) + c_2 e^{at} \left(\sin(bt) \boldsymbol{p} + \cos(bt) \boldsymbol{q} \right)$$

We have the following classification of the fixed point, x = 0:

- (a) $\lambda_1 < 0 < \lambda_2$: unstable saddle point
- (b) $\lambda_1 < \lambda_2 < 0$: stable node
- (c) $0 < \lambda_1 < \lambda_2$: unstable node
- (d) if $\lambda_1 = a + ib (b \neq 0)$,
 - *a* < 0: stable spiral
 - *a* > 0: unstable spiral
 - *a* = 0: *linear* center.